基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
移动通信技术的飞速发展在提升用户通信体验的同时也为不良信息的散布提供了便利,针对如何在大量数据中进行不良内容的识别与过滤问题,提出一种基于深度模型集成的不良图像分类模型(EDM),通过集成多个结构不同、信息互补的深度模型来最优地区分分布差异较大的不良图像.为了验证本方法的有效性,建立一个真实移动通信场景下的不良图像数据集,并在此数据集上与基于传统支持向量机(SVM)的不良图像分类模型、基于深度卷积神经网络的Alexnet、VGG与Googlenet分类模型做对比.实验结果表明:本文所提深度模型集成方法在不良图像分类性能上明显优于其他模型,分类精度、精确率和召回率分别达到94%、84%和98%.
推荐文章
集成随机森林的分类模型
集成学习
随机森林
带阈值的多数投票法
MapReduce
P2P流量识别
基于稀疏深度置信网络的图像分类识别研究
焊缝缺陷
深度学习
稀疏约束
深度置信网络
基于集成随机森林模型的肺结节良恶性分类
计算机辅助诊断
CT图像
肺结节良恶性分类
集成随机森林
基于DS聚类的高光谱图像集成分类算法
优势集
聚类
集成
支持向量机
高光谱图像分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 深度模型集成的不良图像分类
来源期刊 北京交通大学学报 学科 工学
关键词 图像分类 不良信息检测 深度学习 SVM分类器
年,卷(期) 2017,(6) 所属期刊栏目 深度学习研究进展及应用
研究方向 页码范围 21-26
页数 6页 分类号 TP183
字数 5017字 语种 中文
DOI 10.11860/j.issn.1673-0291.2017.06.004
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杜雪涛 36 79 4.0 7.0
2 张晨 18 44 4.0 6.0
3 杜刚 9 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (57)
共引文献  (23)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(11)
  • 参考文献(1)
  • 二级参考文献(10)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(8)
  • 参考文献(0)
  • 二级参考文献(8)
2007(8)
  • 参考文献(0)
  • 二级参考文献(8)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(3)
  • 参考文献(2)
  • 二级参考文献(1)
2014(8)
  • 参考文献(1)
  • 二级参考文献(7)
2015(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像分类
不良信息检测
深度学习
SVM分类器
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
北京交通大学学报
双月刊
1673-0291
11-5258/U
大16开
北京西直门外上园村3号
1975
chi
出版文献量(篇)
3626
总下载数(次)
7
总被引数(次)
38401
论文1v1指导