基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提高不平衡数据下少数类样本的自然发火预测精度,建立基于K-means-Relief-HSMOTE-SVM的采空区自然发火预测模型.首先,应用K-means法优化Relief方法,筛选自然发火指标,以弥补Relief指标筛选方法导致发火特征权重值偏大的缺陷;其次,针对合成少数类过采样(SMOTE)方法在处理不平衡数据时出现的因插值空间过小导致过拟合等问题,提出基于h维空间的过采样算法(HSMOTE),使自然发火数据集趋于平衡;应用支持向量机(SVM)预测降维、平衡后的发火数据;最后,选用张家口宣东2号煤矿实测样本试验50次,并对比所建模型.结果表明:用所建模型能提取关键特征因子,克服SMOTE方法的缺陷,有效提升SVM在不平衡数据下对少数类发火样本的预测精度和几何平均正确率.
推荐文章
基于不平衡数据集的客户流失预测研究
类不平衡性
客户流失预测
机器学习
抽样法
不平衡数据分类的研究现状
不平衡数据
机器学习
模式分类
面向类不平衡数据集的软件缺陷预测模型
软件缺陷预测
类不平衡数据
特征选择
集成算法
不平衡数据集的分类方法研究
机器学习
不平衡数据
数据分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 不平衡数据下的采空区自然发火预测研究
来源期刊 中国安全科学学报 学科 工学
关键词 不平衡数据 采空区自然发火 支持向量机(SVM) 预测 h维空间的过采样算法(HSMOTE)
年,卷(期) 2017,(6) 所属期刊栏目 安全工程技术科学
研究方向 页码范围 61-66
页数 6页 分类号 X936
字数 4345字 语种 中文
DOI 10.16265/j.cnki.issn1003-3033.2017.06.011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 邵良杉 辽宁工程技术大学系统工程研究所 189 1464 18.0 27.0
2 李相辰 辽宁工程技术大学系统工程研究所 2 9 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (62)
共引文献  (93)
参考文献  (9)
节点文献
引证文献  (4)
同被引文献  (43)
二级引证文献  (11)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(7)
  • 参考文献(0)
  • 二级参考文献(7)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(7)
  • 参考文献(0)
  • 二级参考文献(7)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(8)
  • 参考文献(1)
  • 二级参考文献(7)
2010(7)
  • 参考文献(1)
  • 二级参考文献(6)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(3)
  • 参考文献(2)
  • 二级参考文献(1)
2013(4)
  • 参考文献(2)
  • 二级参考文献(2)
2014(3)
  • 参考文献(2)
  • 二级参考文献(1)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(3)
  • 引证文献(3)
  • 二级引证文献(0)
2019(5)
  • 引证文献(0)
  • 二级引证文献(5)
2020(7)
  • 引证文献(1)
  • 二级引证文献(6)
研究主题发展历程
节点文献
不平衡数据
采空区自然发火
支持向量机(SVM)
预测
h维空间的过采样算法(HSMOTE)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国安全科学学报
月刊
1003-3033
11-2865/X
大16开
北京市东城区和平里九区甲4号安信大厦A306室
1991
chi
出版文献量(篇)
6482
总下载数(次)
26
总被引数(次)
114972
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导