基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统卷积神经网络(CNN)只适用于灰度图像或彩色图像分通道的特征提取,忽视了通道间的空间依赖性,破坏了真实环境的颜色特征,从而影响人体行为识别的准确率.为了解决上述问题,提出一种基于四元数时空卷积神经网络(QST-CNN)的人体行为识别方法.首先,采用码本算法预处理样本集所有图像,提取图像中人体运动的关键区域;然后将彩色图像的四元数矩阵形式作为网络的输入,并将CNN的空间卷积层扩展为四元数空间卷积层,将彩色图像的红、绿、蓝通道看作一个整体进行动作空间特征的提取,并在时间卷积层提取相邻帧的动态信息;最后,比较QST-CNN、灰度单通道CNN(Gray-CNN)和RGB 3通道CNN(3 Channel-CNN)3种方法的识别率.实验结果表明,所提方法优于其他流行方法,在Weizmann和UCF sports数据集分别取得了85.34%和80.2%的识别率.
推荐文章
基于双流卷积神经网络的改进人体行为识别算法
人体行为识别
深度学习
双流卷积神经网络
模型融合
基于卷积神经网络的人体行为识别方法
深度残差网络
BN-Inception网络
空间时间网络
光流
基于深度时空卷积神经网络的人群异常行为检测和定位
人群异常行为检测
深度时空卷积神经网络
迁移学习
数据扩充
基于卷积神经网络的人脸性别识别
人脸性别识别
卷积神经网络
稀疏连接
权值共享
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于四元数时空卷积神经网络的人体行为识别
来源期刊 仪器仪表学报 学科 工学
关键词 四元数 卷积神经网络 码本 人体行为识别
年,卷(期) 2017,(11) 所属期刊栏目 信息处理技术
研究方向 页码范围 2643-2650
页数 8页 分类号 TP391.4|TH164
字数 4405字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 孟勃 东北电力大学信息工程学院 9 63 4.0 7.0
2 刘雪君 东北电力大学信息工程学院 2 21 2.0 2.0
3 王晓霖 东北电力大学信息工程学院 2 13 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (76)
共引文献  (34)
参考文献  (16)
节点文献
引证文献  (11)
同被引文献  (47)
二级引证文献  (0)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(8)
  • 参考文献(0)
  • 二级参考文献(8)
2012(11)
  • 参考文献(0)
  • 二级参考文献(11)
2013(11)
  • 参考文献(1)
  • 二级参考文献(10)
2014(12)
  • 参考文献(2)
  • 二级参考文献(10)
2015(5)
  • 参考文献(0)
  • 二级参考文献(5)
2016(12)
  • 参考文献(9)
  • 二级参考文献(3)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(4)
  • 引证文献(4)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(5)
  • 引证文献(5)
  • 二级引证文献(0)
研究主题发展历程
节点文献
四元数
卷积神经网络
码本
人体行为识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
仪器仪表学报
月刊
0254-3087
11-2179/TH
大16开
北京市东城区北河沿大街79号
2-369
1980
chi
出版文献量(篇)
12507
总下载数(次)
27
总被引数(次)
146776
论文1v1指导