林地叶面积指数(Leaf area index,LAI)的准确估测是精准林业的重要体现.为了快速、准确、无损监测林地LAI,利用LAI-2200型植物冠层分析仪获取福建省西部森林样地的LAI数据,结合同期Pleiades卫星影像计算12种遥感植被指数,分析了各样地实测LAI数据和相应植被指数的相关性,进而使用随机森林(RF)算法构建了林地LAI估算模型,以支持向量回归(SVR)模型和反向传播神经网络(BP)模型作为参比模型,以决定系数(R2)、均方根误差(RMSE)、平均相对误差(MAE)和相对分析误差(RPD)为指标评价并比较了模型预测精度.结果表明:全样本数据中,各植被指数与对应LAI值均呈极显著相关(P<0.01),且相关系数都大于0.4;RF模型在3次不同样本组中的预测精度均高于同期的SVR模型和BP模型;3个样本组中RF模型的LAI估测值与实测值的R2分别为0.688、0.796和0.707,RPD分别为1.653、1.984和1.731,均高于同期SVR模型和BP模型,对应的RMSE分别为0.509、0.658和0.696,MAE分别为0.417、0.414和0.466,均低于同期其他2种模型.