作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在神经网络的监督学习中,需要大量人工标识特征的训练样本集。学习系统的成功依赖于样本标识特征的准确性,但人工标识特征费时费力,人为因素决定的特征通用性较差。稀疏自编码器是一种无监督学习方法,可以通过对无标记样本的学习,自动提取样本特征。对稀疏自编码器进行仿真,证明它可以很好地提取输入的无标记样本的特征,这将极大地提高机器学习系统的应用范围和准确性。
推荐文章
稀疏和标签约束半监督自动编码器的分类算法
分类
稀疏约束
标签约束
自动编码器
极限学习机
基于平滑l1范数的深度稀疏自动编码器社区识别算法
深度学习
社区识别
稀疏自编码器
平滑l1范数
基于循环自动编码器的间歇过程故障监测
算法
动态建模
神经网络
LSTM
过程监测
循环自动编码器
基于深度自动编码器的机场安检人脸识别系统设计
人脸识别
Gabor小波
识别率
深度自动编码器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于稀疏自动编码器的深度神经网络实现
来源期刊 现代计算机:中旬刊 学科 工学
关键词 机器学习 深度神经网络 深度学习 人工神经网络 稀疏自编码器 深度自编码器
年,卷(期) 2017,(12) 所属期刊栏目
研究方向 页码范围 41-44
页数 4页 分类号 TP18
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张光建 21 49 5.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (1)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
机器学习
深度神经网络
深度学习
人工神经网络
稀疏自编码器
深度自编码器
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代计算机:中旬刊
月刊
1007-1423
44-1415/TP
广州市海珠区新港西路135号中山大学园B
46-205
出版文献量(篇)
9067
总下载数(次)
3
总被引数(次)
0
论文1v1指导