作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了解决传统车辆检测存在的问题,提高车辆检测的准确度,本文提出将区域卷积神经网络算法应用到车辆检测中.该算法利用图像的颜色层次特征,获取潜在的车辆候选区域;建立卷积神经网络结构,使用车辆样本库进行特征训练,提取候选区域特征;选定正负样本进行SVM分类器训练,采用SVM分类器进行最终的候选区域分类,最后得到车辆信息.本文使用的算法能够检测出图像中的车辆,剔除非车辆区域,有效提高车辆检测的准确性,并且具有一定的实时性.
推荐文章
基于多任务卷积神经网络的轨道车辆螺栓异常检测方法
多任务卷积神经网络
螺栓异常
图像对比
基于卷积神经网络的目标检测研究综述
卷积神经网络
目标检测
深度学习
基于卷积神经网络的肺炎检测系统
卷积神经网络
胸部X光影像
肺炎诊断
图像预处理
VGG
特征提取
一种基于卷积神经网络的结构损伤检测方法
卷积神经网络
损伤识别
加速度
抗噪性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于区域卷积神经网络的车辆检测方法
来源期刊 科技广场 学科 工学
关键词 候选区域 车辆检测 卷积神经网络 深度学习 支持向量机
年,卷(期) 2017,(3) 所属期刊栏目 研究与探讨
研究方向 页码范围 10-14
页数 5页 分类号 TP301
字数 3326字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 封晶 江西理工大学信息工程学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (81)
共引文献  (168)
参考文献  (10)
节点文献
引证文献  (2)
同被引文献  (11)
二级引证文献  (7)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(2)
  • 参考文献(0)
  • 二级参考文献(2)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(8)
  • 参考文献(0)
  • 二级参考文献(8)
2012(13)
  • 参考文献(0)
  • 二级参考文献(13)
2013(10)
  • 参考文献(1)
  • 二级参考文献(9)
2014(9)
  • 参考文献(1)
  • 二级参考文献(8)
2015(9)
  • 参考文献(3)
  • 二级参考文献(6)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(2)
  • 引证文献(1)
  • 二级引证文献(1)
2020(7)
  • 引证文献(1)
  • 二级引证文献(6)
研究主题发展历程
节点文献
候选区域
车辆检测
卷积神经网络
深度学习
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
科技广场
月刊
1671-4792
36-1253/N
大16开
南昌市省府大院北二路53号
44-66
1988
chi
出版文献量(篇)
11613
总下载数(次)
26
总被引数(次)
31625
论文1v1指导