基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
居民负荷分类与识别是负荷监测与需求侧管理的研究基础.为了实现居民负荷用电模式的提取和识别,本文对负荷公共数据集运用主成分分析降维并聚类,提出了一种计及典型用电模式的梯度提升树负荷分类识别方法.首先对负荷公共数据集重采样并获得各类负荷能耗特征样本,归一化后通过主成分分析法降维得到特征的主成分.再通过改进K均值聚类法获得各类负荷的典型用电模式,训练梯度提升树并进行超参数优化,对测试集负荷类型进行识别.在公共数据集与实测数据上测试发现,该方法对于居民负荷分类识别有良好效果,能够实现对负荷的分类识别.
推荐文章
基于磁梯度张量的磁目标模式识别方法
磁梯度张量
量子粒子群支持向量机
磁目标识别
磁异常信号处理
一种基于层级分类策略的复杂模式识别方法
层级分类
模式识别
肌电信号
基于贝叶斯分类研究肌肉动作模式识别方法
自回归模型
表面肌电信号
贝叶斯分类
虚拟仪器
基于多分类器组合的红外目标识别方法
红外探测
模式识别
多分类器组合
BP神经网络
决策融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 计及用电模式的居民负荷梯度提升树分类识别方法
来源期刊 电力系统及其自动化学报 学科 工学
关键词 公共数据集 负荷用电模式 改进K均值聚类 梯度提升树
年,卷(期) 2017,(9) 所属期刊栏目 学术论文
研究方向 页码范围 27-33
页数 7页 分类号 TM713
字数 6688字 语种 中文
DOI 10.3969/j.issn.1003-8930.2017.09.005
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王守相 天津大学智能电网教育部重点实验室 96 5815 36.0 76.0
2 刘天宇 天津大学智能电网教育部重点实验室 8 59 4.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (70)
共引文献  (116)
参考文献  (13)
节点文献
引证文献  (17)
同被引文献  (59)
二级引证文献  (10)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(3)
  • 参考文献(1)
  • 二级参考文献(2)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(6)
  • 参考文献(1)
  • 二级参考文献(5)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(9)
  • 参考文献(0)
  • 二级参考文献(9)
2011(8)
  • 参考文献(1)
  • 二级参考文献(7)
2012(9)
  • 参考文献(0)
  • 二级参考文献(9)
2013(7)
  • 参考文献(2)
  • 二级参考文献(5)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(4)
  • 参考文献(3)
  • 二级参考文献(1)
2016(4)
  • 参考文献(2)
  • 二级参考文献(2)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(7)
  • 引证文献(7)
  • 二级引证文献(0)
2019(14)
  • 引证文献(9)
  • 二级引证文献(5)
2020(6)
  • 引证文献(1)
  • 二级引证文献(5)
研究主题发展历程
节点文献
公共数据集
负荷用电模式
改进K均值聚类
梯度提升树
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电力系统及其自动化学报
月刊
1003-8930
12-1251/TM
大16开
天津市南开区天津大学电气与自动化工程学院
1989
chi
出版文献量(篇)
3958
总下载数(次)
6
总被引数(次)
53050
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导