基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为实现小样本情况下对滚动轴承进行故障检测和分析,提出了基于局部均值分解(LMD)的能量熵和支持向量机(SVM)相结合的滚动轴承故障诊断方法.利用LMD信号处理方法将滚动轴承振动信号分解成有限个乘积函数(PF)分量,通过计算PF分量的能量熵进行故障特征提取,然后将提取的特征输入到SVM分类器中进行训练及测试,最终实现对滚动轴承的故障诊断.实验数据显示,在仅有少量样本条件下,LMD能量熵和SVM相结合的方法能够精确地对滚动轴承的故障类型进行识别和分类,这表明该方法对滚动轴承故障诊断的有效性.
推荐文章
基于改进HHT能量熵和SVM的滚动轴承故障诊断
希尔伯特-黄变换
能量熵
支持向量机
滚动轴承
故障诊断
基于LMD能量熵的滚动轴承故障特征提取
滚动轴承
局部均值分解
能量熵
特征提取
基于LMD基本尺度熵的AP聚类滚动轴承故障诊断
局部均值分解
基本尺度熵
滚动轴承
故障诊断
AP聚类算法
基于SVD-LMD模糊熵与PNN的滚动轴承故障诊断
奇异值分解
局部均值分解
模糊熵
概率神经网络
轴承故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 LMD能量熵和SVM相结合的滚动轴承故障诊断
来源期刊 机械科学与技术 学科 工学
关键词 滚动轴承 故障诊断 局部均值分解 能量熵 支持向量机
年,卷(期) 2017,(6) 所属期刊栏目 精密制造与加工
研究方向 页码范围 915-918
页数 4页 分类号 TH17
字数 2358字 语种 中文
DOI 10.13433/j.cnki.1003-8728.2017.0615
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郎超男 10 34 4.0 5.0
2 邢邦圣 24 76 5.0 7.0
3 徐乐 11 38 4.0 6.0
4 高钦武 2 23 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (56)
共引文献  (114)
参考文献  (13)
节点文献
引证文献  (20)
同被引文献  (102)
二级引证文献  (29)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(8)
  • 参考文献(1)
  • 二级参考文献(7)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(9)
  • 参考文献(1)
  • 二级参考文献(8)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(8)
  • 参考文献(3)
  • 二级参考文献(5)
2012(6)
  • 参考文献(5)
  • 二级参考文献(1)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(7)
  • 引证文献(6)
  • 二级引证文献(1)
2019(25)
  • 引证文献(8)
  • 二级引证文献(17)
2020(16)
  • 引证文献(5)
  • 二级引证文献(11)
研究主题发展历程
节点文献
滚动轴承
故障诊断
局部均值分解
能量熵
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机械科学与技术
月刊
1003-8728
61-1114/TH
大16开
西安友谊西路127号
52-193
1981
chi
出版文献量(篇)
8073
总下载数(次)
15
总被引数(次)
69926
论文1v1指导