原文服务方: 中国机械工程       
摘要:
针对齿轮故障诊断问题,利用数理统计特征提取方法、深度学习神经网络、粒子群算法和支持向量机等技术,提出了一种基于深度学习特征提取和粒子群支持向量机状态识别相结合的智能诊断模型.该模型利用深度学习自适应提取的频谱特征与数理统计方法提取的时域特征相结合组成联合特征向量,然后利用粒子群支持向量机对联合特征向量进行故障诊断.该模型在对多级齿轮传动系统试验台的故障诊断中实现了中速轴大齿轮不同故障类型的可靠识别,获得了满意的诊断结果.应用结果也验证了基于深度学习自适应提取频谱特征的有效性.
推荐文章
基于粒子群优化支持向量机的电梯故障诊断
电梯
故障诊断
最优小波包
粒子群算法
支持向量机
基于粒子群算法和支持向量机的故障诊断研究
最小二乘支持向量机
粒子群算法
故障诊断
全局最优
深度支持向量机在齿轮故障诊断中的应用
故障诊断
变分模态分解
峭度
深度支持向量机
齿轮箱
基于粒子群算法优化支持向量机汽车故障诊断研究
粒子群算法
支持向量机
汽车故障诊断
遗传聚类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习特征提取和粒子群支持向量机状态识别的齿轮智能故障诊断
来源期刊 中国机械工程 学科
关键词 齿轮故障 深度学习 特征提取 支持向量机 智能诊断
年,卷(期) 2017,(9) 所属期刊栏目 信息技术
研究方向 页码范围 1056-1061,1068
页数 7页 分类号 TH132.41
字数 语种 中文
DOI 10.3969/j.issn.1004-132X.2017.09.009
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 时培明 燕山大学电气工程学院 71 537 12.0 20.0
2 赵娜 燕山大学电气工程学院 15 156 6.0 12.0
3 梁凯 燕山大学电气工程学院 3 69 2.0 3.0
4 安淑君 燕山大学电气工程学院 2 69 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (60)
共引文献  (200)
参考文献  (11)
节点文献
引证文献  (57)
同被引文献  (155)
二级引证文献  (37)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(9)
  • 参考文献(2)
  • 二级参考文献(7)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(12)
  • 参考文献(1)
  • 二级参考文献(11)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(8)
  • 参考文献(1)
  • 二级参考文献(7)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2017(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(27)
  • 引证文献(24)
  • 二级引证文献(3)
2019(41)
  • 引证文献(20)
  • 二级引证文献(21)
2020(24)
  • 引证文献(11)
  • 二级引证文献(13)
研究主题发展历程
节点文献
齿轮故障
深度学习
特征提取
支持向量机
智能诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国机械工程
月刊
1004-132X
42-1294/TH
大16开
湖北省武汉市洪山区南李路湖北工业大学
1990-01-01
中文
出版文献量(篇)
13171
总下载数(次)
0
总被引数(次)
206238
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导