基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对液体中物质浓度预测模型,构建一种基于卷积神经网络的水质特征提取模型.首先,定义含有卷积层、采样层、全连接层的七层网络结构,选取适当的最优化方法和损失函数,对模型进行训练调整参数.接着分析了不同损失函数对模型训练和模型验证的影响.实验验证了在水质检测领域运用卷积神经网络回归的可行性.
推荐文章
基于CNN-LSTM的QAR数据特征提取与预测
深度学习
融合卷积神经网络
长短时记忆网络
特征提取
时间序列预测
一种融合AutoEncoder与CNN的混合算法用于图像特征提取
深度学习
卷积神经网络
自动编码器
滤波
稀疏控制
基于多Agent的特征提取模型研究
Agent
多Agent模型
JAFMAS
特征提取
基于高斯模型的心电特征提取研究
心电信号
QRS
高斯混合模型
特征提取
R峰定位
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于CNN的水质特征提取模型
来源期刊 信息通信 学科 工学
关键词 卷积神经网络回归 光谱分析 水质检测 损失函数 梯度下降
年,卷(期) 2017,(12) 所属期刊栏目 技术创新
研究方向 页码范围 61-63
页数 3页 分类号 TP3
字数 2044字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张银银 三峡大学计算机与信息学院 6 6 2.0 2.0
2 汪宏舟 三峡大学计算机与信息学院 2 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (66)
共引文献  (474)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1943(1)
  • 参考文献(0)
  • 二级参考文献(1)
1955(1)
  • 参考文献(0)
  • 二级参考文献(1)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(3)
  • 参考文献(2)
  • 二级参考文献(1)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(8)
  • 参考文献(0)
  • 二级参考文献(8)
2016(12)
  • 参考文献(1)
  • 二级参考文献(11)
2017(4)
  • 参考文献(1)
  • 二级参考文献(3)
2017(4)
  • 参考文献(1)
  • 二级参考文献(3)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络回归
光谱分析
水质检测
损失函数
梯度下降
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息通信
月刊
1673-1131
42-1739/TN
大16开
湖北省武汉市
1987
chi
出版文献量(篇)
18968
总下载数(次)
92
总被引数(次)
34323
论文1v1指导