针对现有改进互信息爬山(MI&HC)算法精度低、耗时长及简化爬山(SHC)算法产生大量冗余边的问题,提出一种新的结构学习算法,即改进爬山(I H C)算法.通过计算互信息链得到贝叶斯初始结构,利用条件独立性测试以及对孤立节点进行处理来加边补充贝叶斯初始结构得到完全结构,利用改进的爬山搜索算子对完全结构进行搜索直到得出最优结构.将该算法与爬山(HC)算法、MI&HC算法、SHC算法进行比较,仿真结果表明,IHC算法能够得到较高准确率的模型,时间开销最小而且产生的冗余边数远远少于SHC算法产生的冗余边数.最后基于IHC算法,结合某回转窑数据进行训练,得到了回转窑工艺参数的故障诊断模型,对回转窑的烧成带温度实现了较为准确的故障诊断.