基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统推荐算法存在数据稀疏影响推荐效果的问题,考虑到社交网络中的链路预测能够综合考虑用户节点之间的拓扑结构,以及好友关系能反映用户的兴趣爱好,提出了一种融合好友关系和标签信息的推荐算法.首先,借助网络资源分配算法对社交网络的结构信息进行特征提取;然后,利用TF-IDF构建合理的社会化标签模型;最后,利用线性模型融合两方面的信息,从而实现推荐.在Last.fm和Delicious数据集上的实验表明,与传统算法相比,所提算法在推荐的召回率和准确率指标上有显著提高.
推荐文章
基于标签分类的协同过滤推荐算法
协同过滤
矩阵分解
交替最小二乘法
迭代投影寻踪
监督学习
基于标签优化的协同过滤推荐算法
标签
拓展近邻
协同过滤
社会化标签语义相似度的协同过滤算法
协同过滤
推荐系统
社会化标签
语义相似度
预测性能
基于混合蛙跳联合聚类的协同过滤算法
推荐系统
协同过滤
联合聚类
数据填充
混合蛙跳
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于好友关系和标签的混合协同过滤算法
来源期刊 计算机科学 学科 工学
关键词 链路预测 社交关系 标签 TF-IDF 推荐算法
年,卷(期) 2017,(8) 所属期刊栏目 人工智能
研究方向 页码范围 246-251
页数 6页 分类号 TP311
字数 7223字 语种 中文
DOI 10.11896/j.issn.1002-137X.2017.08.042
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 曾安 广东工业大学计算机学院 32 150 8.0 11.0
2 徐小强 广东工业大学计算机学院 3 24 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (69)
共引文献  (85)
参考文献  (10)
节点文献
引证文献  (9)
同被引文献  (49)
二级引证文献  (7)
1966(1)
  • 参考文献(0)
  • 二级参考文献(1)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(17)
  • 参考文献(1)
  • 二级参考文献(16)
2010(8)
  • 参考文献(0)
  • 二级参考文献(8)
2011(9)
  • 参考文献(0)
  • 二级参考文献(9)
2012(7)
  • 参考文献(0)
  • 二级参考文献(7)
2013(7)
  • 参考文献(2)
  • 二级参考文献(5)
2014(5)
  • 参考文献(3)
  • 二级参考文献(2)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(12)
  • 引证文献(5)
  • 二级引证文献(7)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
链路预测
社交关系
标签
TF-IDF
推荐算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学
月刊
1002-137X
50-1075/TP
大16开
重庆市渝北区洪湖西路18号
78-68
1974
chi
出版文献量(篇)
18527
总下载数(次)
68
总被引数(次)
150664
论文1v1指导