基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
高校招生在线咨询通常采用人工回复或基于关键词匹配的问答系统来处理,常存在人工回复效率低下,问答系统答非所问的问题;此外,咨询文本往往比较简短,文本向量化表示易导致高维稀疏问题.针对上述问题,提出一种基于栈式降噪稀疏自编码网络(SDSAE)的招生咨询算法.首先,利用自编码网络对短文本进行特征提取和降维,引入数据集增强技术和添加噪声技术解决训练样本规模较小且分类不均问题,提高算法的泛化能力;获得短文本低维特征表示后,结合反向传播(BP)算法对文本进行分类.所提算法分类效果优于BP、支持向量机(SVM)、极限学习机(ELM)等算法,能显著提高招生咨询文本的分类效果.
推荐文章
基于深度自编码的局部增强属性网络表示学习
网络表示
深度自编码器
属性网络
局部增强网络表示
基于深度卷积稀疏自编码分层网络的人脸识别技术
人脸识别
特征提取
稀疏自编码
卷积神经网络
SVM分类器
深度网络
基于深度卷积自编码神经网络的手写数字识别研究
卷积自编码神经网络
双线性插值
手写数字识别
深度学习
融合TDA的深度自编码网络车辆目标检测
交通监控
目标检测
点云区域生长分割
拓扑数据分析
层次聚类
深度自编码网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度自编码网络的高校招生咨询算法
来源期刊 计算机应用 学科 工学
关键词 深度学习 自编码 神经网络 文本分类
年,卷(期) 2017,(11) 所属期刊栏目 应用前沿、交叉与综合
研究方向 页码范围 3323-3329
页数 7页 分类号 TP391.41
字数 6943字 语种 中文
DOI 10.11772/j.issn.1001-9081.2017.11.3323
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周尚波 重庆大学计算机学院 39 540 14.0 22.0
2 俸世洲 重庆师范大学涉外商贸学院 16 15 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (48)
共引文献  (35)
参考文献  (14)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(2)
  • 参考文献(1)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(5)
  • 参考文献(2)
  • 二级参考文献(3)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(9)
  • 参考文献(2)
  • 二级参考文献(7)
2014(5)
  • 参考文献(2)
  • 二级参考文献(3)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
自编码
神经网络
文本分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用
月刊
1001-9081
51-1307/TP
大16开
成都237信箱
62-110
1981
chi
出版文献量(篇)
20189
总下载数(次)
40
总被引数(次)
209512
论文1v1指导