基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对目前具有非线性特征的金融时间序列浅层模型预测精度有限的问题,提出一种由底层的栈式自编码器和顶层的回归神经元组成的栈式自编码神经网络预测模型.首先利用自编码器的无监督学习机制对时间序列进行特征识别与学习,逐层贪婪学习神经网络各层,之后将栈式自编码器扩展为有监督机制的SAEP模型,将SAE学习到的参数用于初始化神经网络,最后利用有监督学习对权值进行微调.实验设计利用汇率时间序列作为训练及测试样本,与目前较成熟的方法进行对比实验,验证了所提出的模型在汇率时序预测应用中的有效性.
推荐文章
基于栈式降噪自编码器的协同过滤算法
推荐系统
协同过滤
深度学习
栈式降噪自编码器
基于栈式稀疏自编码器的有源欺骗干扰识别
欺骗干扰
干扰识别
时频分析
深度学习
栈式稀疏自编码器
基于栈式降噪自编码器故障诊断方法研究
复杂工业系统
故障诊断
栈式降噪自编码器
激活函数
栈式自编码的恶意代码分类算法研究
栈式自编码
恶意代码
分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于栈式自编码器模型的汇率时间序列预测
来源期刊 计算机应用与软件 学科 工学
关键词 时间序列 预测 深度学习 栈式自编码器 特征学习 深度神经网络
年,卷(期) 2017,(3) 所属期刊栏目 算法
研究方向 页码范围 218-221,247
页数 5页 分类号 TP391|TP183
字数 3244字 语种 中文
DOI 10.3969/j.issn.1000-386x.2017.03.039
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 何希平 重庆工商大学电子商务与供应链系统重庆市重点实验室 22 197 8.0 13.0
7 寇茜茜 重庆工商大学电子商务与供应链系统重庆市重点实验室 3 25 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (70)
共引文献  (47)
参考文献  (13)
节点文献
引证文献  (10)
同被引文献  (59)
二级引证文献  (54)
1976(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(6)
  • 参考文献(2)
  • 二级参考文献(4)
2007(4)
  • 参考文献(2)
  • 二级参考文献(2)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(7)
  • 参考文献(0)
  • 二级参考文献(7)
2011(5)
  • 参考文献(1)
  • 二级参考文献(4)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(9)
  • 参考文献(0)
  • 二级参考文献(9)
2014(7)
  • 参考文献(1)
  • 二级参考文献(6)
2015(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(7)
  • 引证文献(4)
  • 二级引证文献(3)
2019(45)
  • 引证文献(5)
  • 二级引证文献(40)
2020(12)
  • 引证文献(1)
  • 二级引证文献(11)
研究主题发展历程
节点文献
时间序列
预测
深度学习
栈式自编码器
特征学习
深度神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用与软件
月刊
1000-386X
31-1260/TP
大16开
上海市愚园路546号
4-379
1984
chi
出版文献量(篇)
16532
总下载数(次)
47
总被引数(次)
101489
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导