基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
采用AP聚类算法进行复杂网络社团挖掘,提高了社团挖掘的精度,但在处理海量数据时算法速率明显下降,其中一个重要原因是单台计算机的计算性能无法满足海量数据的计算需求.为了提高社团挖掘AP聚类在处理海量数据时的速率,设计出一种在Hadoop框架下进行的社团挖掘的并行化AP聚类方法;将传统单机模式下的社团挖掘AP聚类算法在分布式平台上分布进行并行化.实验表明,社团挖掘的并行化AP聚类方法在社团挖掘精度不下降的情况下提高了海量数据的社团挖掘速率.
推荐文章
ABC_Kmeans聚类算法的MapReduce并行化研究
K-means
聚类
人工蜂群
MapReduce
基于网络社团划分方法的多维数据聚类研究
聚类
多维数据
相似性
社团划分
基于MapReduce并行化计算的大数据聚类算法
大数据
MapReduce
并行计算
数据聚类
大数据挖掘中的MapReduce并行聚类优化算法研究
大数据
MapReduce
并行化处理
聚类算法
数据挖掘
Map任务
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 社团挖掘的并行化AP聚类方法
来源期刊 微型机与应用 学科 工学
关键词 社团挖掘 AP聚类 并行化 MapReduce
年,卷(期) 2017,(12) 所属期刊栏目 软件与算法
研究方向 页码范围 16-18
页数 3页 分类号 TN929.12
字数 3000字 语种 中文
DOI 10.19358/j.issn.1674-7720.2017.12.005
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王林 西安理工大学自动化与信息工程学院 74 1063 14.0 31.0
2 董小江 西安理工大学自动化与信息工程学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (79)
共引文献  (358)
参考文献  (8)
节点文献
引证文献  (1)
同被引文献  (4)
二级引证文献  (0)
1970(2)
  • 参考文献(0)
  • 二级参考文献(2)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1976(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(6)
  • 参考文献(0)
  • 二级参考文献(6)
2000(8)
  • 参考文献(0)
  • 二级参考文献(8)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(16)
  • 参考文献(0)
  • 二级参考文献(16)
2005(6)
  • 参考文献(1)
  • 二级参考文献(5)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(6)
  • 参考文献(1)
  • 二级参考文献(5)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
社团挖掘
AP聚类
并行化
MapReduce
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息技术与网络安全
月刊
2096-5133
10-1543/TP
大16开
北京市海淀区清华东路25号(北京927信箱)
82-417
1982
chi
出版文献量(篇)
10909
总下载数(次)
33
总被引数(次)
35987
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导