钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
文献导航
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
数据库索引
>
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
默认
篇关摘
篇名
关键词
摘要
全文
作者
作者单位
基金
分类号
搜索文章
搜索思路
钛学术文献服务平台
\
学术期刊
\
工业技术期刊
\
自动化技术与计算机技术期刊
\
计算机工程与应用期刊
\
结合肤色模型和卷积神经网络的手势识别方法
结合肤色模型和卷积神经网络的手势识别方法
作者:
刘辉
李鹏举
王彬
王龙
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
手势识别
高斯肤色模型
深度学习
卷积神经网络
摘要:
在手势识别研究过程中,人工选取特征难以适应手势的多变性.提出了一种结合肤色模型和卷积神经网络的手势识别方法,对采集的不同背景下的手势图像,首先用肤色高斯模型分割出手势区域,然后采用卷积神经网络建立手势的识别模型,该模型融合了手势特征提取和分类过程,模拟视觉传导和认知,有效避免了人工特征提取的主观性和局限性.识别模型以手势区域的灰度信息为输入,同时利用权值共享和池化等技术减少网络权值个数,降低了模型的复杂度.实验结果表明,卷积神经网络(CNN)方法能够有效进行特征学习,在不同数据集下对手势的平均识别率都达到95%以上,与传统方法进行对比实验,表明该方法具有较高的识别率和实时性.
暂无资源
收藏
引用
分享
推荐文章
基于Leap Motion和卷积神经网络的手势识别
手势识别
高精度
Leap Motion
灰度处理
卷积神经网络
深度学习
基于改进卷积神经网络的手势识别
改进卷积神经网络
手势识别
准确率
图像处理
过拟合
Dropout
基于多尺度卷积神经网络模型的手势图像识别
卷积神经网络
卷积核
深度学习
特征提取
手势识别
二值化
基于卷积神经网络的未知协议识别方法
深度学习
机器学习
卷积神经网络
未知协议识别
内容分析
文献信息
引文网络
相关学者/机构
相关基金
期刊文献
内容分析
关键词云
关键词热度
相关文献总数
(/次)
(/年)
文献信息
篇名
结合肤色模型和卷积神经网络的手势识别方法
来源期刊
计算机工程与应用
学科
工学
关键词
手势识别
高斯肤色模型
深度学习
卷积神经网络
年,卷(期)
2017,(6)
所属期刊栏目
图形图像处理
研究方向
页码范围
209-214
页数
6页
分类号
TP391
字数
5232字
语种
中文
DOI
10.3778/j.issn.1002-8331.1508-0251
五维指标
作者信息
序号
姓名
单位
发文数
被引次数
H指数
G指数
1
刘辉
昆明理工大学信息工程与自动化学院
147
1430
17.0
34.0
2
王彬
昆明理工大学信息工程与自动化学院
50
321
11.0
15.0
3
李鹏举
昆明理工大学信息工程与自动化学院
3
53
3.0
3.0
4
王龙
昆明理工大学信息工程与自动化学院
12
62
3.0
7.0
传播情况
被引次数趋势
(/次)
(/年)
引文网络
引文网络
二级参考文献
(106)
共引文献
(271)
参考文献
(16)
节点文献
引证文献
(42)
同被引文献
(98)
二级引证文献
(59)
1962(1)
参考文献(0)
二级参考文献(1)
1978(1)
参考文献(0)
二级参考文献(1)
1982(1)
参考文献(0)
二级参考文献(1)
1987(1)
参考文献(0)
二级参考文献(1)
1989(1)
参考文献(0)
二级参考文献(1)
1993(1)
参考文献(0)
二级参考文献(1)
1994(1)
参考文献(0)
二级参考文献(1)
1995(2)
参考文献(0)
二级参考文献(2)
1996(1)
参考文献(0)
二级参考文献(1)
1997(3)
参考文献(1)
二级参考文献(2)
1998(3)
参考文献(0)
二级参考文献(3)
1999(2)
参考文献(0)
二级参考文献(2)
2000(3)
参考文献(0)
二级参考文献(3)
2002(5)
参考文献(0)
二级参考文献(5)
2003(2)
参考文献(0)
二级参考文献(2)
2004(3)
参考文献(0)
二级参考文献(3)
2005(6)
参考文献(1)
二级参考文献(5)
2006(7)
参考文献(1)
二级参考文献(6)
2007(14)
参考文献(0)
二级参考文献(14)
2008(4)
参考文献(0)
二级参考文献(4)
2009(10)
参考文献(1)
二级参考文献(9)
2010(12)
参考文献(1)
二级参考文献(11)
2011(6)
参考文献(1)
二级参考文献(5)
2012(10)
参考文献(2)
二级参考文献(8)
2013(10)
参考文献(2)
二级参考文献(8)
2014(9)
参考文献(3)
二级参考文献(6)
2015(3)
参考文献(3)
二级参考文献(0)
2017(8)
参考文献(0)
二级参考文献(0)
引证文献(8)
二级引证文献(0)
2017(8)
引证文献(8)
二级引证文献(0)
2018(18)
引证文献(14)
二级引证文献(4)
2019(49)
引证文献(17)
二级引证文献(32)
2020(26)
引证文献(3)
二级引证文献(23)
研究主题发展历程
节点文献
手势识别
高斯肤色模型
深度学习
卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
主办单位:
华北计算技术研究所
出版周期:
半月刊
ISSN:
1002-8331
CN:
11-2127/TP
开本:
大16开
出版地:
北京619信箱26分箱
邮发代号:
82-605
创刊时间:
1964
语种:
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
云南省自然科学基金
英文译名:
官方网址:
项目类型:
面上项目
学科类型:
国家自然科学基金
英文译名:
the National Natural Science Foundation of China
官方网址:
http://www.nsfc.gov.cn/
项目类型:
青年科学基金项目(面上项目)
学科类型:
数理科学
期刊文献
相关文献
1.
基于Leap Motion和卷积神经网络的手势识别
2.
基于改进卷积神经网络的手势识别
3.
基于多尺度卷积神经网络模型的手势图像识别
4.
基于卷积神经网络的未知协议识别方法
5.
基于卷积神经网络的交通声音事件识别方法
6.
基于肤色特征和卷积神经网络的手势识别方法
7.
改进卷积神经网络的手写试卷分数识别方法
8.
基于卷积神经网络的ECG信号识别方法
9.
基于卷积神经网络的钣金件表面缺陷分类识别方法
10.
基于代价敏感卷积神经网络的人脸年龄识别方法
11.
一种新型卷积神经网络植物叶片识别方法
12.
一种基于肤色特征提取的手势检测识别方法
13.
基于卷积神经网络的小样本树皮图像识别方法
14.
多卷积神经网络模型融合的皮肤病识别方法
15.
基于卷积神经网络的μ子散射成像材料识别方法研究
推荐文献
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
根据相关规定,获取原文需跳转至原文服务方进行注册认证身份信息
完成下面三个步骤操作后即可获取文献,阅读后请
点击下方页面【继续获取】按钮
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
原文合作方
继续获取
获取文献流程
1.访问原文合作方请等待几秒系统会自动跳转至登录页,首次访问请先注册账号,填写基本信息后,点击【注册】
2.注册后进行实名认证,实名认证成功后点击【返回】
3.检查邮箱地址是否正确,若错误或未填写请填写正确邮箱地址,点击【确认支付】完成获取,文献将在1小时内发送至您的邮箱
*若已注册过原文合作方账号的用户,可跳过上述操作,直接登录后获取原文即可
点击
【获取原文】
按钮,跳转至合作网站。
首次获取需要在合作网站
进行注册。
注册并实名认证,认证后点击
【返回】按钮。
确认邮箱信息,点击
【确认支付】
, 订单将在一小时内发送至您的邮箱。
*
若已经注册过合作网站账号,请忽略第二、三步,直接登录即可。
期刊分类
期刊(年)
期刊(期)
期刊推荐
一般工业技术
交通运输
军事科技
冶金工业
动力工程
化学工业
原子能技术
大学学报
建筑科学
无线电电子学与电信技术
机械与仪表工业
水利工程
环境科学与安全科学
电工技术
石油与天然气工业
矿业工程
自动化技术与计算机技术
航空航天
轻工业与手工业
金属学与金属工艺
计算机工程与应用2022
计算机工程与应用2021
计算机工程与应用2020
计算机工程与应用2019
计算机工程与应用2018
计算机工程与应用2017
计算机工程与应用2016
计算机工程与应用2015
计算机工程与应用2014
计算机工程与应用2013
计算机工程与应用2012
计算机工程与应用2011
计算机工程与应用2010
计算机工程与应用2009
计算机工程与应用2008
计算机工程与应用2007
计算机工程与应用2006
计算机工程与应用2005
计算机工程与应用2004
计算机工程与应用2003
计算机工程与应用2002
计算机工程与应用2001
计算机工程与应用2000
计算机工程与应用2017年第9期
计算机工程与应用2017年第8期
计算机工程与应用2017年第7期
计算机工程与应用2017年第6期
计算机工程与应用2017年第5期
计算机工程与应用2017年第4期
计算机工程与应用2017年第3期
计算机工程与应用2017年第24期
计算机工程与应用2017年第23期
计算机工程与应用2017年第22期
计算机工程与应用2017年第21期
计算机工程与应用2017年第20期
计算机工程与应用2017年第2期
计算机工程与应用2017年第19期
计算机工程与应用2017年第18期
计算机工程与应用2017年第17期
计算机工程与应用2017年第16期
计算机工程与应用2017年第15期
计算机工程与应用2017年第14期
计算机工程与应用2017年第13期
计算机工程与应用2017年第12期
计算机工程与应用2017年第11期
计算机工程与应用2017年第10期
计算机工程与应用2017年第1期
关于我们
用户协议
隐私政策
知识产权保护
期刊导航
免费查重
论文知识
钛学术官网
按字母查找期刊:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他
联系合作 广告推广: shenyukuan@paperpass.com
京ICP备2021016839号
营业执照
版物经营许可证:新出发 京零 字第 朝220126号