基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
通过在不同文本数据集上的试验表明,文中提出的算法具有不错的表现.与文本分类中常用的特征选择算法IG、CHI相比,文中算法是有效的且能够提高分类的精确率.
推荐文章
基于假设检验的文本分类特征选择
特征选择
假设检验
文本分类
T-C双向四格表
文本分类中的特征选择方法
文本分类
特征选择
评估函数
基于发现特征子空间模型的文本分类算法
发现特征子空间
文本分类
模式
文本分类中基于CHI改进的特征选择方法
文本分类
卡方统计量
特征选择
不均衡数据集
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于相关性的文本分类特征选择算法
来源期刊 信息通信 学科 工学
关键词 特征选择 相关性 文本分类 冗余
年,卷(期) 2017,(3) 所属期刊栏目 技术创新
研究方向 页码范围 73-74
页数 2页 分类号 TP391
字数 1942字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘胜军 2 0 0.0 0.0
2 刘贵全 2 0 0.0 0.0
3 陈志华 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (81)
共引文献  (14)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1940(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(9)
  • 参考文献(0)
  • 二级参考文献(9)
2012(10)
  • 参考文献(0)
  • 二级参考文献(10)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(10)
  • 参考文献(0)
  • 二级参考文献(10)
2015(3)
  • 参考文献(2)
  • 二级参考文献(1)
2016(4)
  • 参考文献(4)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
特征选择
相关性
文本分类
冗余
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息通信
月刊
1673-1131
42-1739/TN
大16开
湖北省武汉市
1987
chi
出版文献量(篇)
18968
总下载数(次)
92
总被引数(次)
34323
论文1v1指导