基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
A method for gearbox fault diagnosis consists of feature extraction andfault identification. Many methods for feature extraction have beendevised for exposing nature of vibration data of a defective gearbox. Inaddition, features extracted from gearbox vibration data are identifiedby various classifiers. However, existing literatures leave much to bedesired in assessing performance of different combinatorial methods forgearbox fault diagnosis. To this end, this paper evaluated performance ofseveral typical combinatorial methods for gearbox fault diagnosis byassociating each of multifractal detrended fluctuation analysis (MFDFA),empirical mode decomposition (EMD) and wavelet transform (WT) witheach of neural network (NN), Mahalanobis distance decision rules(MDDR) and support vector machine (SVM). Following this,performance of different combinatorial methods was compared using agroup of gearbox vibration data containing slightly different faultpatterns. The results indicate that MFDFA performs better in featureextraction of gearbox vibration data and SVM does the same in faultidentification. Naturally, the method associating MFDFA with SVMshows huge potential for fault diagnosis of gearboxes. As a result, thispaper can provide some useful information on construction of a methodfor gearbox fault diagnosis.
推荐文章
EMD—SVM组合模型带钢张力预测中的应用
带钢张力
经验模态分解
支持向量机
回归分析
预测
EMD-SVM在纹理图像识别中的应用
经验模式分解
支持向量机
固有模式函数
纹理识别
基于小波包分解和EMD-SVM的轴承故障诊断方法
故障诊断
小波包分解
轴承
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Comparisons of MFDFA, EMD and WT by Neural Network, Mahalanobis Distance and SVM in Fault Diagnosis of Gearboxes
来源期刊 声音与振动(英文) 学科 地球科学
关键词 MULTIFRACTAL detrended FLUCTUATION analysis support vectormachine FAULT diagnosis GEARBOX
年,卷(期) syyzdyw,(2) 所属期刊栏目
研究方向 页码范围 12-16
页数 5页 分类号 P31
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
MULTIFRACTAL
detrended
FLUCTUATION
analysis
support
vectormachine
FAULT
diagnosis
GEARBOX
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
声音与振动(英文)
双月刊
1541-0161
江苏省南京市浦口区东大路2号东大科技园A
210000
出版文献量(篇)
31
总下载数(次)
0
论文1v1指导