作者:
原文服务方: 机械强度       
摘要:
故障特征提取的精确性和分类识别的高效率是提高故障诊断准确率和速度的关键,针对此问题,提出一种基于经验模式分解(empirical mode decomposition,EMD)近似熵和最小二乘支持向量机(least square support vector machine,LS-SVM)的机械故障诊断新方法.利用EMD良好的局域化特性和近似熵表征信号复杂性规律来量化故障特征,再与LS-SVM相结合进行故障类型识别.首先,对故障振动信号进行EMD 分解,得到若干个反映故障信息的本征模函数(intrinsic mode function,IMF);其次,选取前4个IMF的近似熵值作为信号的特征向量;最后将构造的特征向量输入到LS-SVM分类器进行故障类型识别.仿真表明,该方法能有效地提取故障特征,与传统的BP(back propagation)络相比,具有训练样本少、训练时间短、识别率高等优点.
推荐文章
基于LCD信息熵特征和SVM的机械故障诊断
局部特征尺度分解
信息熵
支持向量机
特征提取
故障诊断
基于ELMD与LS-SVM的滚动轴承故障诊断方法
ELMD
模式混淆
LS-SVM
滚动轴承
故障诊断
基于LS-SVM和D-S证据理论的轴承故障诊断
信息融合
滚动轴承故障诊断
LS-SVM
D-S证据理论
基于LS-SVM ARX模型的除湿机故障诊断
故障诊断
除湿机
最小二乘支持向量机
外加输入自回归模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于EMD近似熵和LS-SVM的机械故障智能诊断
来源期刊 机械强度 学科
关键词 经验模式分解(empirical mode decomposition,EMD) 近似熵 最小二乘支持向量机(least square support vector machine,LS-SVM)故障诊断
年,卷(期) 2011,(2) 所属期刊栏目 振动·燥声·监测·诊断
研究方向 页码范围 165-169
页数 分类号 TP181|TH165.3
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 戴桂平 苏州市职业大学电子信息工程系 22 144 5.0 11.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (28)
共引文献  (127)
参考文献  (8)
节点文献
引证文献  (12)
同被引文献  (58)
二级引证文献  (41)
1991(3)
  • 参考文献(1)
  • 二级参考文献(2)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(1)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(5)
  • 引证文献(4)
  • 二级引证文献(1)
2015(3)
  • 引证文献(1)
  • 二级引证文献(2)
2016(10)
  • 引证文献(4)
  • 二级引证文献(6)
2017(9)
  • 引证文献(0)
  • 二级引证文献(9)
2018(6)
  • 引证文献(1)
  • 二级引证文献(5)
2019(15)
  • 引证文献(1)
  • 二级引证文献(14)
2020(4)
  • 引证文献(0)
  • 二级引证文献(4)
研究主题发展历程
节点文献
经验模式分解(empirical mode decomposition,EMD)
近似熵
最小二乘支持向量机(least square support vector machine,LS-SVM)故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机械强度
双月刊
1001-9669
41-1134/TH
大16开
河南省郑州市科学大道149号
1975-01-01
中文
出版文献量(篇)
4191
总下载数(次)
0
总被引数(次)
35027
论文1v1指导