作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
A recent work has shown that using an ion trap quantum processor can speed up the decision making of a reinforcement learning agent. Its quantum advantage is observed when the external environment changes, and then agent needs to relearn again. One character of this quantum hardware system discovered in this study is that it tends to overestimate the values used to determine the actions the agent will take. IBM’s five qubit superconducting quantum processor is a popular quantum platform. The aims of our study are twofold. First we want to identify the hardware characteristic features of IBM’s 5Q quantum computer when running this learning agent, compared with the ion trap processor. Second, through careful analysis, we observe that the quantum circuit employed in the ion trap processor for this agent could be simplified. Furthermore, when tested on IBM’s 5Q quantum processor, our simplified circuit demonstrates its enhanced performance over the original circuit on one of the hard learning tasks investigated in the previous work. We also use IBM’s quantum simulator when a good baseline is needed to compare the performances. As more and more quantum hardware devices are moving out of the laboratory and becoming generally available to public use, our work emphasizes the fact that the features and constraints of the quantum hardware could take a toll on the performance of quantum algorithms.
推荐文章
基于Q学习的自主Agent模型
Agent
强化学习
Q学习
BDI模型
基于Q学习的Agent在交叉口航班排序中的应用
航路交叉口
航班排序
Q-learning
奖惩函数
基于“5G+4K+AI”模式的智慧广电发展策略研究
智慧广电
5G网络
智慧家庭媒体
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Empirical Analysis of Decision Making of an AI Agent on IBM’s 5Q Quantum Computer
来源期刊 自然科学期刊(英文) 学科 医学
关键词 QUANTUM COMPUTATION QUANTUM Machine LEARNING QUANTUM REINFORCEMENT LEARNING QUANTUM Circuit
年,卷(期) 2018,(1) 所属期刊栏目
研究方向 页码范围 45-58
页数 14页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
QUANTUM
COMPUTATION
QUANTUM
Machine
LEARNING
QUANTUM
REINFORCEMENT
LEARNING
QUANTUM
Circuit
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自然科学期刊(英文)
月刊
2150-4091
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
1054
总下载数(次)
0
总被引数(次)
0
论文1v1指导