基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
由于多标记学习中的"维度灾难"问题,鉴于判别嵌入式聚类(DEC)算法对数据降维的特点,本文提出了基于DEC算法的多标记学习.该算法在多标记数据集作分类处理之前,采取DEC算法对多标记数据集进行维度约简,从而降低算法复杂度、提高分类性能.实验结果表明,这种基于DEC算法的多标记学习是有效的.
推荐文章
基于GEP多标记学习的图像超分辨率复原算法
超分辨率复原
基因表达式编程
支持向量机
样本学习
用于多标记学习的K近邻改进算法
分类
K近邻
取样
多标记学习
多标记学习研究综述
多标记学习
机器学习
问题转换
算法改进
评估措施
用于多标记学习的局部顺序分类器链算法
多标记学习
标记相关性
分类器链
K-近邻
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于DEC算法的多标记学习
来源期刊 安庆师范大学学报(自然科学版) 学科 工学
关键词 DEC算法 多标记学习 维度约简 分类性能
年,卷(期) 2018,(2) 所属期刊栏目
研究方向 页码范围 31-35
页数 5页 分类号 TP391
字数 4199字 语种 中文
DOI 10.13757/j.cnki.cn34-1328/n.2018.02.009
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王一宾 安庆师范大学计算机与信息学院 63 407 10.0 18.0
5 裴根生 安庆师范大学计算机与信息学院 8 24 4.0 4.0
6 李闪闪 安庆师范大学计算机与信息学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (78)
共引文献  (29)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(7)
  • 参考文献(1)
  • 二级参考文献(6)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(6)
  • 参考文献(1)
  • 二级参考文献(5)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(8)
  • 参考文献(0)
  • 二级参考文献(8)
2014(5)
  • 参考文献(3)
  • 二级参考文献(2)
2015(16)
  • 参考文献(3)
  • 二级参考文献(13)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
DEC算法
多标记学习
维度约简
分类性能
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
安庆师范大学学报(自然科学版)
季刊
1007-4260
34-1328/N
大16开
安徽省安庆市
26-142
1982
chi
出版文献量(篇)
3170
总下载数(次)
9
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导