基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
稀疏编码视频目标跟踪算法对目标遮挡问题有一定的适应性,但当目标受背景杂波、光照变化等干扰时,跟踪结果将会出现漂移现象.为此,提出一种基于字典学习和模板更新的视频目标跟踪算法.该算法在构造字典时加入背景模板集,利用标签一致K-SVD方法进行字典学习,同时训练出低维字典和目标背景分类器;在稀疏编码过程中,借助粒子滤波技术,采用分类器分类结果和候选目标直方图构建整体似然模型;最后通过字典学习更新字典、分类器及目标直方图.采用标准数据库中具有挑战性的视频数据进行算法测试实验,结果表明,对于存在遮挡、背景杂波、光照变化、目标旋转和尺度变化等复杂跟踪环境下的目标跟踪,文中算法都能有效地降低跟踪结果存在的漂移现象,且具有较好的稳定性.
推荐文章
基于稀疏 K-SVD 字典的图像融合方法
稀疏K-SVD
解析字典
学习字典
图像融合
基于K-SVD超声渡越时间获取方法研究
稀疏表示
完备字典
超声检测
正交匹配追踪
K-SVD
基于自适应K-SVD字典的视频帧稀疏重建算法
K-SVD算法
自适应K-SVD算法
字典学习
稀疏表示
压缩感知
广义贝叶斯字典学习K-SVD稀疏表示算法
稀疏贝叶斯学习
视频图像稀疏表示
字典学习
K-SVD算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 标签一致K-SVD稀疏编码视频跟踪算法
来源期刊 计算机辅助设计与图形学学报 学科 工学
关键词 视频跟踪 标签一致 稀疏编码 字典学习 粒子滤波
年,卷(期) 2018,(2) 所属期刊栏目 图像与视觉
研究方向 页码范围 262-272
页数 11页 分类号 TP391.41
字数 10156字 语种 中文
DOI 10.3724/SP.J.1089.2018.16246
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨金龙 江南大学物联网工程学院 28 103 7.0 8.0
2 汤玉 江南大学物联网工程学院 2 4 2.0 2.0
3 徐壮 江南大学物联网工程学院 4 4 2.0 2.0
4 陈小平 江南大学物联网工程学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (46)
共引文献  (63)
参考文献  (13)
节点文献
引证文献  (2)
同被引文献  (2)
二级引证文献  (0)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(6)
  • 参考文献(1)
  • 二级参考文献(5)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(3)
  • 参考文献(2)
  • 二级参考文献(1)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
视频跟踪
标签一致
稀疏编码
字典学习
粒子滤波
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机辅助设计与图形学学报
月刊
1003-9775
11-2925/TP
大16开
北京2704信箱
82-456
1989
chi
出版文献量(篇)
6095
总下载数(次)
15
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
江苏省自然科学基金
英文译名:Natural Science Foundation of Jiangsu Province
官方网址:http://www.jsnsf.gov.cn/News.aspx?a=37
项目类型:
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导