基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着科技的快速发展,大数据时代已经到来.对于大数据的分析与处理推动社会经济的不断发展,在大数据背景下,数据规模、处理难点的优化问题也变得更加多样化,进而使优化方法成为人们日益关注的焦点.一种新型的计算技术——群智能算法,运用高效的优化算法对自然界社会性生物群体进行模拟,解决各个领域的实际问题.本文提出群智能算法中的自适应优化算法——粒子群算法,详细分析粒子群算法的原理,为了提高全局搜索能力及计算效率,本文加入了种群自适应增加/删除个体数目方法有效改进种群多样化,提高收敛速度及质量.基于逻辑斯谛模型的算子设计有效地增强了粒子群的多样性,自适应控制策略更具有一般性特征,可更好地应用到不同的群智能算法中,解决大数据问题的优化性.
推荐文章
云环境下基于群智能算法的大数据聚类挖掘技术
大数据聚类挖掘
云环境
群智能算法
数据挖掘
并行化聚类挖掘
数据密度计算
云环境下基于群智能算法的大数据聚类挖掘技术
大数据聚类挖掘
云计算模型分析
聚类分析
聚类算法设计
算法优化
聚类算法改进
云计算中基于群体智能算法的大数据聚类挖掘
云计算
群体智能算法
大数据挖掘
聚类分析
智能算法在稀布阵列天线中的应用研究
粒子群算法
遗传算法
差分进化算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 大数据环境中群智能算法的应用研究
来源期刊 智能计算机与应用 学科 工学
关键词 大数据 智能算法 优化 粒子群
年,卷(期) 2018,(4) 所属期刊栏目
研究方向 页码范围 81-84
页数 4页 分类号 TP301.6
字数 3186字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨剑 电子科技大学成都学院计算机系 17 53 5.0 6.0
2 张敏辉 成都师范学院计算机科学学院 12 13 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (76)
共引文献  (696)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(8)
  • 参考文献(0)
  • 二级参考文献(8)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(10)
  • 参考文献(0)
  • 二级参考文献(10)
2012(9)
  • 参考文献(3)
  • 二级参考文献(6)
2013(5)
  • 参考文献(3)
  • 二级参考文献(2)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
大数据
智能算法
优化
粒子群
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能计算机与应用
双月刊
2095-2163
23-1573/TN
大16开
哈尔滨市南岗区繁荣街155号(哈工大新技术楼916室)
14-144
1985
chi
出版文献量(篇)
6183
总下载数(次)
26
总被引数(次)
14240
论文1v1指导