原文服务方: 微电子学与计算机       
摘要:
针对大数据存在的高维、强约束和多目标等复杂优化问题,本文提出一种改进的群智能优化算法——狮群简化粒子群算法(LSA-SPSO).该算法将狮群算法的分组思想融入简化粒子群优化算法中,将粒子分为三组寻优,每组使用不同的学习因子和学习维度向量,以此帮助种群执行不同的搜索机制,从而增强了种群的多样性.此外,引入种群育种,有利于粒子跳出局部最优位置,提高了算法的全局搜索性能.仿真实验表明,本文提出的改进算法有效改善了传统群智能算法中存在的不足,可以更好的应用到大数据中.
推荐文章
基于优化粒子群算法的云环境大数据聚类算法
大数据聚类
云环境
粒子群优化
空间分割
模糊聚类
仿真测试
基于改进的简化粒子群聚类算法
简化粒子群算法
粒密度
最大距离积法
随机分布
极值扰动算子
K-means算法
一种简化的混合粒子群算法
简化粒子群算法
细菌群体趋药性算法
全局扰动
精英保留
改进的简化粒子群算法优化模糊神经网络建模
记忆功放模型
自适应模糊推理系统
简化粒子群算法
个体最优候选解
拉普拉斯系数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 大数据环境中简化粒子群算法的改进研究
来源期刊 微电子学与计算机 学科
关键词 大数据 简化粒子群 狮群算法 分组 学习因子 学习维度向量 种群育种
年,卷(期) 2020,(2) 所属期刊栏目
研究方向 页码范围 25-29
页数 5页 分类号 TP18|TP391.41
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 靳雁霞 中北大学大数据学院 46 160 7.0 10.0
2 齐欣 中北大学大数据学院 3 1 1.0 1.0
3 张晋瑞 中北大学大数据学院 5 1 1.0 1.0
4 程琦甫 中北大学大数据学院 5 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (49)
共引文献  (294)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(5)
  • 参考文献(2)
  • 二级参考文献(3)
2016(3)
  • 参考文献(0)
  • 二级参考文献(3)
2017(3)
  • 参考文献(2)
  • 二级参考文献(1)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
大数据
简化粒子群
狮群算法
分组
学习因子
学习维度向量
种群育种
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微电子学与计算机
月刊
1000-7180
61-1123/TN
大16开
1972-01-01
chi
出版文献量(篇)
9826
总下载数(次)
0
总被引数(次)
59060
论文1v1指导