原文服务方: 计算机应用研究       
摘要:
当前最新的兴趣点推荐工作开始融合地理、文本和社交信息进行推荐,但是还存在信息挖掘不充分的情况.为此,提出了改进的多类型信息融合的联合概率生成的兴趣点推荐模型.首先提出了自动学习文档话题数目的分层狄利克雷过程主题模型,学习用户和兴趣点相关兴趣话题;同时,利用由签到分布决定带宽大小的核密度估计法,个性化地理信息对用户签到行为的影响,而且还融合了用户位置访问序列中已访问兴趣点对待访问兴趣点的影响,即序列模式的影响;然后综合考虑了用户社交关系的影响;最后基于联合概率生成模型,融合文本、地理、社会和序列信息,提出TGSS-PGM兴趣点推荐模型,依据计算结果从而生成兴趣点推荐列表推荐给用户.实验结果表明,该模型在推荐准确率等多种评价指标上都取得了更好的结果.
推荐文章
一种基于位置社交网络融合多种情景信息的兴趣点推荐模型
协同过滤
兴趣点推荐
位置社交网络
情景建模
主题分析
基于语义位置和区域划分的兴趣点推荐模型
位置社交网络
语义位置
兴趣点推荐
时间主题
区域影响
一种基于位置社交网络融合多种情景信息的兴趣点推荐模型
协同过滤
兴趣点推荐
位置社交网络
情景建模
主题分析
融合相似度和地理信息的兴趣点推荐
潜在狄利克雷分布
Louvain社区发现
兴趣点推荐
地理信息
相似度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于多类型情景信息的兴趣点推荐模型
来源期刊 计算机应用研究 学科
关键词 基于位置的社交网络 兴趣点推荐 隐马尔可夫链 核密度估计 话题模型 社交影响
年,卷(期) 2018,(6) 所属期刊栏目 算法研究探讨
研究方向 页码范围 1636-1640,1675
页数 6页 分类号 TP181
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2018.06.008
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 胡德敏 上海理工大学光电信息与计算机工程学院 44 241 10.0 13.0
5 杨晨 上海理工大学光电信息与计算机工程学院 2 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (17)
共引文献  (42)
参考文献  (7)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(5)
  • 参考文献(3)
  • 二级参考文献(2)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
基于位置的社交网络
兴趣点推荐
隐马尔可夫链
核密度估计
话题模型
社交影响
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导