基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In recent years,the rapid development of big data technology has also been favored by more and more scholars.Massive data storage and calculation problems have also been solved.At the same time,outlier detection problems in mass data have also come along with it.Therefore,more research work has been devoted to the problem of outlier detection in big data.However,the existing available methods have high computation time,the improved algorithm of outlier detection is presented,which has higher performance to detect outlier.In this paper,an improved algorithm is proposed.The SMK-means is a fusion algorithm which is achieved by Mini Batch K-means based on simulated annealing algorithm for anomalous detection of massive household electricity data,which can give the number of clusters and reduce the number of iterations and improve the accuracy of clustering.In this paper,several experiments are performed to compare and analyze multiple performances of the algorithm.Through analysis,we know that the proposed algorithm is superior to the existing algorithms.
推荐文章
基于MapReduce框架下K-means的改进算法
MapReduce框架
K-means算法
数据挖掘
聚类分析
基于MapReduce的K-means聚类算法的优化
K均值算法
抽样
Canopy算法
最大最小距离法
k-means算法的研究与改进
聚类
划分方法
数据样本
阈值
基于Spark的并行K-means算法研究
Spark
K-means
PSO
迭代计算
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 SMK-means:An Improved Mini Batch K-means Algorithm Based on Mapreduce with Big Data
来源期刊 计算机、材料和连续体(英文) 学科 工学
关键词 Big data OUTLIER detection SMK-means MINI BATCH K-MEANS simulated ANNEALING
年,卷(期) 2018,(9) 所属期刊栏目
研究方向 页码范围 365-379
页数 15页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Big
data
OUTLIER
detection
SMK-means
MINI
BATCH
K-MEANS
simulated
ANNEALING
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机、材料和连续体(英文)
月刊
1546-2218
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
346
总下载数(次)
4
总被引数(次)
0
论文1v1指导