原文服务方: 计算机测量与控制       
摘要:
针对机械设备产生的非线性、非平稳时间序列,首先使用自回归模型对非平稳数据进行平稳化处理并确定模型的阶数,再使用支持向量回归算法对平稳后的数据进行拟合,并使用粒子群算法优化支持向量回归算法参数;最后,将该模型用于滚动轴承的退化趋势预测,通过提取滚动轴承的时域和频域特征,以经过主成分析降维后的数据为基础进行趋势预测;将该模型预测的结果与单独使用自回归模型和支持向量机模型预测的结果进行对比,实验结果表明该模型预测的效果较好.
推荐文章
一种基于混合核函数PSO_SVR的网络安全态势预测方法
态势预测
网络安全
混合核函数
粒子群算法
支持向量机
基于PSO_SVR的网络安全态势预测方法
支持向量机回归
粒子群优化算法
网络安全态势预测
参数优化
基于 InSAR 监测和 PSO-SVR 模型的高填方区沉降预测
高填方区域
粒子群算法
支持向量机回归
形变预测
基于PSO-SVR航站楼CO2浓度时间序列预测
支持向量回归
粒子群优化算法
航站楼
CO2浓度数据
时间序列预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于AR和PSO_SVR的故障趋势预测
来源期刊 计算机测量与控制 学科
关键词 自回归模型 支持向量回归 主成分析 特征提取 故障趋势预测
年,卷(期) 2018,(5) 所属期刊栏目 设计与应用
研究方向 页码范围 193-195,200
页数 4页 分类号 TP206+.3
字数 语种 中文
DOI 10.16526/j.cnki.11-4762/tp.2018.05.048
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 宁芊 四川大学电子信息学院 60 414 10.0 18.0
5 刘玉茹 四川大学电子信息学院 2 4 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (47)
共引文献  (267)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(8)
  • 参考文献(0)
  • 二级参考文献(8)
2005(11)
  • 参考文献(1)
  • 二级参考文献(10)
2006(8)
  • 参考文献(2)
  • 二级参考文献(6)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(6)
  • 参考文献(1)
  • 二级参考文献(5)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
自回归模型
支持向量回归
主成分析
特征提取
故障趋势预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导