基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统的K-奇异值分解信号利用率不足,采用了稀疏贝叶斯学习预处理图像信号;将正交匹配追踪与改进之后的最速下降理论相结合;因噪声原子存在于字典更新之后得到的字典中,所以结合Bartlett检验法将噪声原子裁剪掉.实验结果表明,此方法相对于小波阈值去噪法、基于离散余弦变换字典稀疏表示等去噪方法能够更好地滤除噪声,保留图像边缘信息,获得更高的峰值信噪比,得到图像视觉效果更佳.
推荐文章
基于奇异值分解的图像去噪
奇异值分解
图像分解
图像去噪
基于遗传算法的奇异值分解信号去噪算法
遗传算法
奇异值分解
K-medoids聚类算法
有效奇异值
信号去噪
基于张量奇异值分解的动态核磁共振图像重建
MRI
图像重建
张量奇异值分解
动态
全变分
奇异值分解去噪中有效秩阶次的自身辅助确定
奇异值分解
信号去噪
Hankel矩阵
奇异性检测
有效秩
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 改进的K-奇异值分解图像去噪算法
来源期刊 计量学报 学科 工学
关键词 计量学 图像去噪 稀疏贝叶斯学习 正交匹配追踪 K-奇异值分解 K-均值聚类
年,卷(期) 2018,(3) 所属期刊栏目
研究方向 页码范围 332-336
页数 5页 分类号 TB96|TP751.1
字数 3898字 语种 中文
DOI 10.3969/j.issn.1000-1158.2018.03.09
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘增力 昆明理工大学信息工程与自动化学院 68 155 6.0 8.0
2 程一峰 昆明理工大学信息工程与自动化学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (30)
共引文献  (17)
参考文献  (10)
节点文献
引证文献  (3)
同被引文献  (20)
二级引证文献  (9)
1937(1)
  • 参考文献(1)
  • 二级参考文献(0)
1966(2)
  • 参考文献(0)
  • 二级参考文献(2)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(2)
  • 二级参考文献(1)
2010(5)
  • 参考文献(2)
  • 二级参考文献(3)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(6)
  • 参考文献(0)
  • 二级参考文献(6)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(5)
  • 引证文献(1)
  • 二级引证文献(4)
2020(6)
  • 引证文献(1)
  • 二级引证文献(5)
研究主题发展历程
节点文献
计量学
图像去噪
稀疏贝叶斯学习
正交匹配追踪
K-奇异值分解
K-均值聚类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计量学报
月刊
1000-1158
11-1864/TB
大16开
北京1413信箱
2-798
1980
chi
出版文献量(篇)
3549
总下载数(次)
8
总被引数(次)
20173
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导