作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
现有卷积神经网络在文本分类性能上受到词向量窗口长度的影响,在研究卷积神经网络分类方法的基础上,提出一种基于循环结构的神经网络文本分类方法,该方法对文本进行单次正向及反向扫描,能够在学习单词表示时尽可能地捕获上下文信息,整体算法时间复杂度为O(n),是线性复杂度;该方法构建文本语义模型可以捕获长距离的依赖关系,使得词向量窗口长度对文本分类性能没有影响,对上下文更有效地建模.实验结果表明,该方法构建文本语义模型的准确率达到96.86%,召回率达到96.15%,F1值达到96.5%,性能优于传统文本分类算法和卷积神经网络方法.
推荐文章
基于词义消歧的卷积神经网络文本分类模型
文本分类
卷积神经网络
长短时记忆网络
特征提取
自然语言处理
基于深度神经网络的中文新闻文本分类方法
深度神经网络
文本分类
中文新闻
自然语言处理
卷积神经网络CNN算法在文本分类上的应用研究
数据挖掘
机器学习
卷积神经网络
文本分类
基于双向长短时记忆单元和卷积神经网络的多语种文本分类方法
多语种文本分类
长短时记忆单元
卷积神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于循环结构的卷积神经网络文本分类方法
来源期刊 重庆邮电大学学报(自然科学版) 学科 工学
关键词 卷积神经网络 循环结构 文本语义模型 文本分类
年,卷(期) 2018,(5) 所属期刊栏目 计算机与自动化
研究方向 页码范围 705-710
页数 6页 分类号 TP391.1
字数 4444字 语种 中文
DOI 10.3979/j.issn.1673-825X.2018.05.018
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈波 陕西理工大学数学与计算机科学学院 6 27 3.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (78)
共引文献  (69)
参考文献  (11)
节点文献
引证文献  (12)
同被引文献  (46)
二级引证文献  (12)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(8)
  • 参考文献(0)
  • 二级参考文献(8)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(7)
  • 参考文献(0)
  • 二级参考文献(7)
2012(13)
  • 参考文献(0)
  • 二级参考文献(13)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(9)
  • 参考文献(2)
  • 二级参考文献(7)
2015(8)
  • 参考文献(2)
  • 二级参考文献(6)
2016(5)
  • 参考文献(4)
  • 二级参考文献(1)
2017(3)
  • 参考文献(2)
  • 二级参考文献(1)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(8)
  • 引证文献(6)
  • 二级引证文献(2)
2020(16)
  • 引证文献(6)
  • 二级引证文献(10)
研究主题发展历程
节点文献
卷积神经网络
循环结构
文本语义模型
文本分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
重庆邮电大学学报(自然科学版)
双月刊
1673-825X
50-1181/N
大16开
重庆南岸区
78-77
1988
chi
出版文献量(篇)
3229
总下载数(次)
12
总被引数(次)
19476
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导