作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
循环神经网络和卷积神经网络能够分别捕捉文本中的长期依赖和局部依赖,但是定长的向量表示限制了循环神经网络的特征表达能力,卷积核的大小也影响了卷积神经网络提取特征的能力.针对这些问题,提出多通道循环卷积神经网络来处理文本分类.采用双向长短期记忆网络对文本进行序列建模;利用标量注意力机制和矢量注意力机制来辅助生成文本的多通道表示;最终由卷积神经网络来完成文本分类.在标准数据集上的实验验证了该框架的分类有效性以及文本多通道表示的语义丰富性.
推荐文章
基于词义消歧的卷积神经网络文本分类模型
文本分类
卷积神经网络
长短时记忆网络
特征提取
自然语言处理
多尺度卷积循环神经网络的情感分类技术
文本情感分类
卷积神经网络
循环神经网络
长短时记忆
多尺度
基于深度神经网络的中文新闻文本分类方法
深度神经网络
文本分类
中文新闻
自然语言处理
卷积神经网络CNN算法在文本分类上的应用研究
数据挖掘
机器学习
卷积神经网络
文本分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多通道循环卷积神经网络的文本分类方法
来源期刊 计算机应用与软件 学科 工学
关键词 注意力机制 循环神经网络 卷积神经网络 多通道 文本分类
年,卷(期) 2020,(8) 所属期刊栏目 算法
研究方向 页码范围 282-288
页数 7页 分类号 TP3
字数 6204字 语种 中文
DOI 10.3969/j.issn.1000-386x.2020.08.048
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (22)
共引文献  (12)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(6)
  • 参考文献(1)
  • 二级参考文献(5)
2016(4)
  • 参考文献(1)
  • 二级参考文献(3)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
注意力机制
循环神经网络
卷积神经网络
多通道
文本分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用与软件
月刊
1000-386X
31-1260/TP
大16开
上海市愚园路546号
4-379
1984
chi
出版文献量(篇)
16532
总下载数(次)
47
总被引数(次)
101489
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导