基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
区分高频噪声点和边缘点是提取噪声图像边缘的难点之一,为了得到噪声图像的清晰边缘,提出一种基于谱聚类(spectral curvature clustering,SCC)的边缘检测算法.该方法通过将边缘检测问题转化为分类问题,利用图像边缘点、平滑点和噪声点位于不同子空间的性质,在有效地聚类平滑点和边缘点的同时,SCC能够较好地抑制噪声点.另外,该算法通过编辑聚类标签并将其转换为二值图像,对二值化图像进行简单的处理即可得到图像的边缘,成功地避免了传统算法中的阈值选择问题.相比于传统的边缘检测方法,实验结果证明了所提算法的有效性.
推荐文章
基于 WSRFCM 聚类的局部离群点检测算法
特征加权
阴影集
阴影粗糙模糊聚类
局部离群度
离群点检测
基于聚类划分的两阶段离群点检测算法
层次聚类
K-均值
信息熵
距离和
离群点检测
基于改进的K-means聚类算法水下图像边缘检测
边缘检测
暗原色先验
图像分析
K-means
一种基于聚类的异常流量检测算法
异常检测
Chameleon算法
异常流量
聚类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于谱聚类的边缘检测算法
来源期刊 郑州大学学报(理学版) 学科 工学
关键词 谱聚类 边缘检测 子空间分类
年,卷(期) 2018,(3) 所属期刊栏目 信息科学
研究方向 页码范围 83-86,93
页数 5页 分类号 TN919.8
字数 2809字 语种 中文
DOI 10.13705/j.issn.1671-6841.2018110
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郭新 郑州大学信息工程学院 3 18 2.0 3.0
2 张众 郑州大学电气工程学院 4 4 1.0 2.0
3 徐明 中原工学院电子信息学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (33)
共引文献  (20)
参考文献  (9)
节点文献
引证文献  (3)
同被引文献  (29)
二级引证文献  (0)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(4)
  • 参考文献(4)
  • 二级参考文献(0)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(4)
  • 参考文献(1)
  • 二级参考文献(3)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
谱聚类
边缘检测
子空间分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
郑州大学学报(理学版)
季刊
1671-6841
41-1338/N
大16开
郑州市高新技术开发区科学大道100号
36-191
1962
chi
出版文献量(篇)
2278
总下载数(次)
0
总被引数(次)
9540
论文1v1指导