基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着互联网的迅猛发展,越来越多的用户在互联网上发表着自己的评论,这些评论中包含着很多有价值的信息,而这些对于厂家进一步了解顾客意见,提高产品质量有着重要意义,但是传统的依靠人工进行问卷调查的手段越来越无法满足市场竞争的需要.因此如何从大量文本中获取有价值的信息成为了一项重要的研究课题.本文利用LSTM结构以及其一种变形GRU结构搭建了两个文本情感分类模型,对中文文本进行情感多分类;同时提出了一种伪梯度下降的方法进行模型参数调整,数值实验结果表明这种参数调整方法可以使模型在较短的时间内达到较高的正确率.
推荐文章
基于深层注意力的LSTM的特定主题情感分析
特定主题情感分析
深层注意力
LSTM
深度学习
自然语言处理
基于LSTM的评论文本情感分析方法研究
文本情感分析
LSTM长短时记忆神经网络
卷积神经网络
词嵌入技术
基于卷积神经网络和Tree-LSTM的微博情感分析
卷积神经网络
注意力机制
长短期记忆神经网络
微博情感分析
基于LSTM自动编码机的短文本聚类方法
自然语言处理
短文本
聚类
长短期记忆网络
自动编码机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于两种LSTM结构的文本情感分析
来源期刊 软件 学科 数学
关键词 情感分析 LSTM GRU 伪梯度下降法
年,卷(期) 2018,(1) 所属期刊栏目 设计研究与应用
研究方向 页码范围 116-120
页数 5页 分类号 O29
字数 4091字 语种 中文
DOI 10.3969/j.issn.1003-6970.2018.01.023
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 钱江 北京邮电大学理学院 2 29 2.0 2.0
2 张玉环 北京邮电大学理学院 1 20 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (33)
共引文献  (138)
参考文献  (11)
节点文献
引证文献  (20)
同被引文献  (74)
二级引证文献  (31)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(2)
  • 参考文献(1)
  • 二级参考文献(1)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(7)
  • 参考文献(0)
  • 二级参考文献(7)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(3)
  • 参考文献(2)
  • 二级参考文献(1)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(23)
  • 引证文献(14)
  • 二级引证文献(9)
2020(26)
  • 引证文献(4)
  • 二级引证文献(22)
研究主题发展历程
节点文献
情感分析
LSTM
GRU
伪梯度下降法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件
月刊
1003-6970
12-1151/TP
16开
北京市3108信箱
1979
chi
出版文献量(篇)
9374
总下载数(次)
40
总被引数(次)
23629
论文1v1指导