钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
文献导航
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
数据库索引
>
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
默认
篇关摘
篇名
关键词
摘要
全文
作者
作者单位
基金
分类号
搜索文章
搜索思路
钛学术文献服务平台
\
学术期刊
\
科教文艺期刊
\
大学学报期刊
\
中国科学院大学学报期刊
\
基于卷积神经网络的时空融合的无参考视频质量评价方法
基于卷积神经网络的时空融合的无参考视频质量评价方法
作者:
王春峰
苏荔
黄庆明
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
视频质量评价
卷积神经网络
无参考
时空信息
摘要:
无参考视频质量评价是指在不借助原始无损参考视频信息的条件下,对于给定的任意一段视频,直接评测出其质量程度.传统的无参考视频质量评价方法大都基于统计分析,绝大多数都针对特定的视频失真类型,对视频的时域信息考虑较少,导致现有的基于统计分析的方法应用范围局限,实时性较差.提出一种融合视频时空信息的基于卷积神经网络的无参考视频质量评价方法.该方法不针对特定失真类型.将方法分为空域和时域两部分进行处理,空域上提出一种基于卷积神经网络的方法学习空域失真特征,时域上设计一组基于邻帧块结构相似度的特征用以表征视频的时域失真信息.最后将视频的时空特征进行融合,送至线性回归模型进行视频质量的预测.实验表明,所提方法的多项指标均达到主流视频质量评价方法的性能,且方法运行速度大大提高,显示出较好的实时应用前景.
暂无资源
收藏
引用
分享
推荐文章
基于3D卷积神经网络的视频哈希算法
深度学习
哈希算法
视频检索
基于卷积神经网络的视频图像超分辨率重建方法
视频
超分辨率重建
卷积神经网络
深度学习
基于深度时空卷积神经网络的人群异常行为检测和定位
人群异常行为检测
深度时空卷积神经网络
迁移学习
数据扩充
基于卷积神经网络的对比度失真图像质量评价
视觉质量评价
对比度失真
卷积神经网络
卷积层
内容分析
文献信息
引文网络
相关学者/机构
相关基金
期刊文献
内容分析
关键词云
关键词热度
相关文献总数
(/次)
(/年)
文献信息
篇名
基于卷积神经网络的时空融合的无参考视频质量评价方法
来源期刊
中国科学院大学学报
学科
工学
关键词
视频质量评价
卷积神经网络
无参考
时空信息
年,卷(期)
2018,(4)
所属期刊栏目
计算机科学
研究方向
页码范围
544-549
页数
6页
分类号
T9391.41
字数
语种
中文
DOI
10.7523/j.issn.2095-6134.2018.04.018
五维指标
作者信息
序号
姓名
单位
发文数
被引次数
H指数
G指数
1
黄庆明
中国科学院大学大数据挖掘与知识管理重点实验室
16
341
7.0
16.0
5
王春峰
中国科学院大学大数据挖掘与知识管理重点实验室
12
76
6.0
8.0
6
苏荔
中国科学院大学大数据挖掘与知识管理重点实验室
2
2
1.0
1.0
传播情况
被引次数趋势
(/次)
(/年)
引文网络
引文网络
二级参考文献
(0)
共引文献
(0)
参考文献
(8)
节点文献
引证文献
(0)
同被引文献
(0)
二级引证文献
(0)
2004(1)
参考文献(1)
二级参考文献(0)
2005(1)
参考文献(1)
二级参考文献(0)
2010(1)
参考文献(1)
二级参考文献(0)
2013(2)
参考文献(2)
二级参考文献(0)
2014(2)
参考文献(2)
二级参考文献(0)
2016(1)
参考文献(1)
二级参考文献(0)
2018(0)
参考文献(0)
二级参考文献(0)
引证文献(0)
二级引证文献(0)
研究主题发展历程
节点文献
视频质量评价
卷积神经网络
无参考
时空信息
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国科学院大学学报
主办单位:
中国科学院大学
出版周期:
双月刊
ISSN:
2095-6134
CN:
10-1131/N
开本:
大16开
出版地:
北京玉泉路19号(甲)
邮发代号:
82-583
创刊时间:
1984
语种:
chi
出版文献量(篇)
2247
总下载数(次)
2
总被引数(次)
15229
相关基金
国家自然科学基金
英文译名:
the National Natural Science Foundation of China
官方网址:
http://www.nsfc.gov.cn/
项目类型:
青年科学基金项目(面上项目)
学科类型:
数理科学
期刊文献
相关文献
1.
基于3D卷积神经网络的视频哈希算法
2.
基于卷积神经网络的视频图像超分辨率重建方法
3.
基于深度时空卷积神经网络的人群异常行为检测和定位
4.
基于卷积神经网络的对比度失真图像质量评价
5.
基于卷积神经网络多层特征融合的目标跟踪
6.
基于卷积神经网络的缺失数据填充方法
7.
基于加权模型的无参考图像质量评价方法
8.
基于卷积神经网络的视频图像失真检测及分类
9.
基于卷积神经网络改进的图像自动分割方法
10.
基于卷积神经网络的横向转角预测方法
11.
基于卷积神经网络的未知协议识别方法
12.
基于卷积神经网络的细胞识别
13.
基于卷积神经网络的辐射图像降噪方法研究
14.
基于卷积神经网络的发动机故障预测方法
15.
基于卷积神经网络的植物图像分类方法研究
推荐文献
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
根据相关规定,获取原文需跳转至原文服务方进行注册认证身份信息
完成下面三个步骤操作后即可获取文献,阅读后请
点击下方页面【继续获取】按钮
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
原文合作方
继续获取
获取文献流程
1.访问原文合作方请等待几秒系统会自动跳转至登录页,首次访问请先注册账号,填写基本信息后,点击【注册】
2.注册后进行实名认证,实名认证成功后点击【返回】
3.检查邮箱地址是否正确,若错误或未填写请填写正确邮箱地址,点击【确认支付】完成获取,文献将在1小时内发送至您的邮箱
*若已注册过原文合作方账号的用户,可跳过上述操作,直接登录后获取原文即可
点击
【获取原文】
按钮,跳转至合作网站。
首次获取需要在合作网站
进行注册。
注册并实名认证,认证后点击
【返回】按钮。
确认邮箱信息,点击
【确认支付】
, 订单将在一小时内发送至您的邮箱。
*
若已经注册过合作网站账号,请忽略第二、三步,直接登录即可。
期刊分类
期刊(年)
期刊(期)
期刊推荐
中学生教育
体育
图书情报档案
大学学报
少儿教育
教育
文化
文学
新闻出版
科研管理
艺术
语言文字
中国科学院大学学报2022
中国科学院大学学报2021
中国科学院大学学报2020
中国科学院大学学报2019
中国科学院大学学报2018
中国科学院大学学报2017
中国科学院大学学报2016
中国科学院大学学报2015
中国科学院大学学报2014
中国科学院大学学报2013
中国科学院大学学报2012
中国科学院大学学报2011
中国科学院大学学报2010
中国科学院大学学报2009
中国科学院大学学报2008
中国科学院大学学报2007
中国科学院大学学报2006
中国科学院大学学报2005
中国科学院大学学报2004
中国科学院大学学报2003
中国科学院大学学报2002
中国科学院大学学报2001
中国科学院大学学报2018年第6期
中国科学院大学学报2018年第5期
中国科学院大学学报2018年第4期
中国科学院大学学报2018年第3期
中国科学院大学学报2018年第2期
中国科学院大学学报2018年第1期
关于我们
用户协议
隐私政策
知识产权保护
期刊导航
免费查重
论文知识
钛学术官网
按字母查找期刊:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他
联系合作 广告推广: shenyukuan@paperpass.com
京ICP备2021016839号
营业执照
版物经营许可证:新出发 京零 字第 朝220126号