基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 视频精彩片段提取是视频内容标注、基于内容的视频检索等领域的热点研究问题.视频精彩片段提取主要根据视频底层特征进行精彩片段的提取,忽略了用户兴趣对于提取结果的影响,导致提取结果可能与用户期望不相符.另一方面,基于用户兴趣的语义建模需要大量的标注视频训练样本才能获得较为鲁棒的语义分类器,而对于大量训练样本的标注费时费力.考虑到互联网中包含内容丰富且易于获取的图像,将互联网图像中的知识迁移到视频片段的语义模型中可以减少大量的视频数据标注工作.因此,提出利用互联网图像的用户兴趣的视频精彩片段提取框架,方法 利用大量互联网图像对用户兴趣语义进行建模,考虑到从互联网中获取的知识变化多样且有噪声,如果不加选择盲目地使用会影响视频片段提取效果,因此,将图像根据语义近似性进行分组,将语义相似但使用不同关键词检索得到的图像称为近义图像组.在此基础上,提出使用近义语义联合组权重模型权衡,根据图像组与视频的语义相关性为不同图像组分配不同的权重.首先,根据用户兴趣从互联网图像搜索引擎中检索与该兴趣语义相关的图像集,作为用户兴趣精彩片段提取的知识来源;然后,通过对近义语义图像组的联合组权重学习,将图像中习得的知识迁移到视频中;最后,使用图像集中习得的语义模型对待提取片段进行精彩片段提取.结果 本文使用CCV数据库中的视频对本文提出的方法进行验证,同时与多种已有的视频关键帧提取算法进行比较,实验结果显示本文算法的平均准确率达到46.54,较其他算法相比提高了21.6%,同时算法耗时并无增加.此外,为探究优化过程中不同平衡参数对最终结果的影响,进一步验证本文方法的有效性,本文在实验过程中通过移除算法中的正则项来验证每一项对于算法框架的影响.实验结果显示,在移除任何一项后算法的准确率明显降低,这表明本文方法所提出的联合组权重模型对提取用户感兴趣视频片段的有效性.结论 本文提出了一种针对用户兴趣语义的视频精彩片段提取方法,根据用户关注点的不同,为不同用户提取其感兴趣的视频片段.
推荐文章
基于用户兴趣特征提取的推荐算法研究
兴趣特征
兴趣度
兴趣度矩阵
推荐算法
基于信息内容和用户关系的用户兴趣分类
用户兴趣
微博文本
关注者
LibSVM
LDA
基于混合行为兴趣度的用户兴趣模型
用户兴趣模型
用户兴趣度
向量空间模型
文本聚类
推荐系统
基于用户兴趣的跨网络用户身份识别算法
跨网络用户身份识别
分块
用户兴趣
用户产生内容
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 针对用户兴趣的视频精彩片段提取
来源期刊 中国图象图形学报 学科 工学
关键词 视频检索 视频精彩片段提取 视频分析 知识迁移
年,卷(期) 2018,(5) 所属期刊栏目 GDC 2017会议专栏
研究方向 页码范围 748-755
页数 8页 分类号 TP391
字数 5533字 语种 中文
DOI 10.11834/jig.170365
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王晗 北京林业大学信息学院 9 23 3.0 4.0
2 俞璜悦 北京林业大学信息学院 3 3 1.0 1.0
3 滑蕊 北京林业大学信息学院 1 0 0.0 0.0
4 邹玲 北京电影学院数字媒体学院 5 6 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (5)
共引文献  (5)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
视频检索
视频精彩片段提取
视频分析
知识迁移
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
总被引数(次)
131816
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导