基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着开源软件项目规模的不断增大,人工为缺陷报告分派合适的开发人员(缺陷分派)变得越来越困难.而不合适的缺陷分派往往会严重影响缺陷修复的效率,为此,迫切需要一种缺陷分派辅助技术帮助项目管理者更好地完成缺陷分派任务.当前,大部分研究工作都基于缺陷报告文本以及相关元数据信息分析来刻画开发者的特征,忽略了对开发者活跃度的考虑,使得对具有相似特征的开发者进行缺陷报告分派预测时表现较差.提出一个基于循环神经网络的深度学习模型DeepTriage,一方面,利用双向循环网络加池化方法提取缺陷报告的文本特征;另一方面,利用单向循环网络提取特定时刻的开发者活跃度特征,并融合两者,利用已修复的缺陷报告进行监督学习.在Eclipse等4个不同的开源项目数据集上的实验结果表明,DeepTriage较之同类工作在缺陷分派预测准确率上有显著提升.
推荐文章
基于循环卷积神经网络的实体关系抽取方法研究
GRU
循环卷积神经网络
注意力机制
关系抽取
基于卷积神经网络的钣金件表面缺陷分类识别方法
卷积神经网络
缺陷检测
缺陷分割提取
窗口滑移检测
基于LSTM循环神经网络的电池SOC预测方法
锂离子电池
荷电状态(SOC)
电动汽车
长短期记忆(LSTM)
循环神经网络
基于轻量级卷积神经网络的实时缺陷检测方法研究
卷积神经网络
深度可分离卷积
通道混洗
缺陷检测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于循环神经网络的缺陷报告分派方法
来源期刊 软件学报 学科 工学
关键词 缺陷分派 循环神经网络 深度学习
年,卷(期) 2018,(8) 所属期刊栏目 数据驱动的软件智能化开发方法与技术专题
研究方向 页码范围 2322-2335
页数 14页 分类号 TP311
字数 11446字 语种 中文
DOI 10.13328/j.cnki.jos.005532
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (5)
节点文献
引证文献  (6)
同被引文献  (5)
二级引证文献  (0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(3)
  • 引证文献(3)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
缺陷分派
循环神经网络
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件学报
月刊
1000-9825
11-2560/TP
16开
北京8718信箱
82-367
1990
chi
出版文献量(篇)
5820
总下载数(次)
36
总被引数(次)
226394
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导