原文服务方: 计算机应用研究       
摘要:
基于循环神经网络结合句法结构的方法被广泛运用于关系分类,利用神经网络对输入的编码信息自动获取特征并实现关系分类;然而,目前已有的方法主要是基于单一特定句法结构的模型,而特定句法结构的模型不能够迁移到其他句法结构类型上.针对该问题,提出一种融合多句法结构的叠层循环神经网络模型.该叠层循环神经网络分为两层进行网络构建,首先在序列层进行实体预训练,通过Bi-LSTM-CRF融合attention机制,提高模型对文本序列上实体信息的关注度,从而获取更加准确的实体特征信息,促进关系层阶段更好地分类;其次在关系层,将Bi-Tree-LSTM嵌套在序列层之上,并将序列层的隐状态与实体特征信息传入关系层,利用共享参数对三种不同的句法结构进行加权学习,通过端到端的模型训练并实现语义关系分类.实验结果表明,该模型在SemEval-2010 Task8语料库上的marco-F1值达到了85.9%,并进一步地提升了模型的鲁棒性.
推荐文章
基于优化神经网络的音乐分类模型研究
音乐分类
分类模型
特征提取
模型训练
最优权值确定
模型构建
多尺度卷积循环神经网络的情感分类技术
文本情感分类
卷积神经网络
循环神经网络
长短时记忆
多尺度
基于循环卷积神经网络的实体关系抽取方法研究
GRU
循环卷积神经网络
注意力机制
关系抽取
基于BiGRU-attention神经网络的文本情感分类模型
文本情感分类
注意力机制
双向门控循环神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于叠层循环神经网络的语义关系分类模型
来源期刊 计算机应用研究 学科
关键词 叠层循环神经网络 多句法结构 Bi-Tree-LSTM 注意力机制 关系分类
年,卷(期) 2020,(1) 所属期刊栏目 算法研究探讨
研究方向 页码范围 135-139,157
页数 6页 分类号 TP183
字数 语种 中文
DOI 10.19734/j.issn.1001-3695.2018.06.0461
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郝志峰 广东工业大学计算机学院 166 940 14.0 20.0
3 蔡瑞初 广东工业大学计算机学院 66 279 10.0 13.0
4 温雯 广东工业大学计算机学院 48 272 10.0 14.0
7 王丽娟 广东工业大学计算机学院 20 92 5.0 9.0
8 陈培辉 汕尾职业技术学院信息工程系 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (2)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
叠层循环神经网络
多句法结构
Bi-Tree-LSTM
注意力机制
关系分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导