基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在解决多标记分类问题的问题转换方法中,二值相关是一种常用的方法,其对于标记间相互独立的假设忽略了标记之间的相关性.多标记分类的分类器链算法通过标记信息在分类器之间的传递考虑了标记间的相关性,从而克服了二值相关算法中标记独立性问题.然而此算法中,分类器链的排序是任意指定的,不同的排序具有不同的分类结果.为了解决这个问题,引入核对齐方法对分类器进行排序并提出了两种算法,其中核对齐是用来衡量两个核函数之间一致性程度的量.一种是最大化特征空间中核函数和标记空间中理想核的凸组合的对齐值,根据每个理想核的权重进行排序,其中理想核是由每个标记定义的.另一种是直接计算核函数与每个理想核的对齐值,根据对齐值进行排序.实验结果表明,提出的基于核对齐的分类器链的多标记学习算法是有效的.
推荐文章
用于多标记学习的局部顺序分类器链算法
多标记学习
标记相关性
分类器链
K-近邻
一种半监督的多标签Boosting分类算法
Boosting算法
半监督学习
多标签分类
一种基于图的层次多标记文本分类方法
文本分类
层次分类
多标记分类
有向无圈图
拓扑排序
一种基于多标记的局部离群点检测算法
机器学习
局部离群点
多标记
类别权重
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于核对齐的分类器链的多标记学习算法
来源期刊 南京大学学报(自然科学版) 学科 工学
关键词 核对齐 多标记学习 二值相关 分类器链
年,卷(期) 2018,(4) 所属期刊栏目
研究方向 页码范围 725-732
页数 8页 分类号 TP181
字数 5582字 语种 中文
DOI 10.13232/j.cnki.jnju.2018.04.007
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈琳琳 华北电力大学控制与计算机工程学院 1 1 1.0 1.0
2 陈德刚 华北电力大学数理学院 7 111 2.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (44)
共引文献  (12)
参考文献  (10)
节点文献
引证文献  (1)
同被引文献  (3)
二级引证文献  (0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(3)
  • 参考文献(2)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(6)
  • 参考文献(1)
  • 二级参考文献(5)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(5)
  • 参考文献(2)
  • 二级参考文献(3)
2015(7)
  • 参考文献(1)
  • 二级参考文献(6)
2016(7)
  • 参考文献(0)
  • 二级参考文献(7)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
核对齐
多标记学习
二值相关
分类器链
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京大学学报(自然科学版)
双月刊
0469-5097
32-1169/N
江苏省南京市南京大学
chi
出版文献量(篇)
2526
总下载数(次)
6
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导