基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
使用计算模型对图像进行自动描述属于视觉高层理解,要求模型不仅能够对图像中的目标及场景进行描述,而且能够对目标与目标之间、目标与场景之间的关系进行表达,同时能够生成符合一定语法和结构的自然语言句子.目前基于深度卷积神经网络(Convolutional neural network,CNN)和长短时记忆网络(Long-short term memory,LSTM)的方法已成为解决该问题的主流,虽然已取得巨大进展,但存在LSTM层次不深,难以优化的问题,导致模型性能难以提升,生成的描述句子质量不高.针对这一问题,受深度学习思想的启发,本文设计了基于逐层优化的多目标优化及多层概率融合的LSTM(Multi-objective layer-wise optimization/multi-layer probability fusion LSTM,MLO/MLPF-LSTM)模型.模型中首先使用浅层LSTM进行训练,收敛之后,保留原LSTM模型中的分类层及目标函数,并添加新的LSTM层及目标函数重新对模型进行训练,对模型原有参数进行微调;在测试时,将多个分类层使用Softmax函数进行变换,得到每层对单词的预测概率分值,然后将多层的概率分值进行加权融合,得到单词的最终预测概率.在MSCOCO和Flickr30K两个数据集上实验结果显示,该模型性能显著,在多个统计指标上均超过了同类其他方法.
推荐文章
基于多线索概率分布图像融合的目标跟踪
目标跟踪
多线索融合
概率分布图像
置信度
平流层飞艇总体多目标优化设计与决策
平流层飞艇
多目标优化
多属性决策
NSGA-Ⅱ
Pareto前沿
基于多目标粒子群优化的图像融合方法
图像融合
Contourlet变换
多目标粒子群
应用Dirichlet分布的概率假设密度多目标跟踪
多目标跟踪
概率假设密度
Dirichlet分布
状态提取
k-d树
期望极大化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 LSTM逐层多目标优化及多层概率融合的图像描述
来源期刊 自动化学报 学科
关键词 图像描述 多目标优化 逐层优化 多层融合 长短时记忆网络 卷积神经网络
年,卷(期) 2018,(7) 所属期刊栏目 论文与报告
研究方向 页码范围 1237-1249
页数 13页 分类号
字数 11382字 语种 中文
DOI 10.16383/j.aas.2017.c160733
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (44)
共引文献  (71)
参考文献  (14)
节点文献
引证文献  (10)
同被引文献  (30)
二级引证文献  (3)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(10)
  • 参考文献(1)
  • 二级参考文献(9)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(11)
  • 参考文献(1)
  • 二级参考文献(10)
2016(8)
  • 参考文献(6)
  • 二级参考文献(2)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(7)
  • 引证文献(7)
  • 二级引证文献(0)
2020(5)
  • 引证文献(2)
  • 二级引证文献(3)
研究主题发展历程
节点文献
图像描述
多目标优化
逐层优化
多层融合
长短时记忆网络
卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自动化学报
月刊
0254-4156
11-2109/TP
大16开
北京市海淀区中关村东路95号(北京2728信箱)
2-180
1963
chi
出版文献量(篇)
4124
总下载数(次)
26
总被引数(次)
120705
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导