基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提高高校网络舆情的可识别性和预警实时性,提高网络舆情热点分析的准确性,论文设计了一个高校网络舆情热点发现模型.包括网络舆情信息采集、预处理、中文分词、特征选择、文本分词和聚类分析.考虑到网络舆情的不确定性和模糊性,提出了一种基于信息熵和密度改进的K-Means聚类算法的网络舆情相似度分析方法,此方法可以对网络热点和危机事件进行聚类和识别.实验结果表明,该方法能够快速获得网络舆情,具有较高的聚类准确率,证明了论文提出的模型的可行性与有效性,可为高校网络舆情监测和识别提供重要的技术支持.
推荐文章
基于Hadoop的灰狼优化K-means算法在主题发现的研究
文本聚类
K-means算法
主题发现
灰狼优化算法
分布式计算
基于深度信念网络的K-means聚类算法研究
K-means算法
深度信念网络
受限玻尔兹曼机
高维数据
聚类分析
FCM算法
基于Spark的并行K-means算法研究
Spark
K-means
PSO
迭代计算
k-means算法的研究与改进
聚类
划分方法
数据样本
阈值
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 高校网络舆情分析的K-Means算法优化研究
来源期刊 湖北民族学院学报(自然科学版) 学科 工学
关键词 信息熵 K-Means 网络舆情
年,卷(期) 2018,(4) 所属期刊栏目
研究方向 页码范围 442-447
页数 6页 分类号 TP301
字数 6019字 语种 中文
DOI 10.13501/j.cnki.42-1569/n.2018.12.018
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 向军 湖北民族学院信息工程学院 30 126 6.0 10.0
2 刘嵩 湖北民族学院信息工程学院 34 127 6.0 10.0
3 陈艳红 湖北民族学院信息工程学院 1 6 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (34)
共引文献  (22)
参考文献  (7)
节点文献
引证文献  (6)
同被引文献  (61)
二级引证文献  (3)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(5)
  • 引证文献(4)
  • 二级引证文献(1)
2020(4)
  • 引证文献(2)
  • 二级引证文献(2)
研究主题发展历程
节点文献
信息熵
K-Means
网络舆情
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
湖北民族大学学报(自然科学版)
季刊
2096-7594
42-1908/N
大16开
湖北省恩施市三孔桥湖北民族学院学报编辑部
1982
chi
出版文献量(篇)
2388
总下载数(次)
3
总被引数(次)
8743
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导