基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
特征选择是从特征集合中选择相关特征子集,方便数据聚类、分类和检索等.现有的无监督特征选择算法是将高维数据映射到低维空间并计算每个特征的得分,选择排名靠前的特征.提出一种基于稀疏聚类的无监督特征选择算法:首先利用流形学习的特征映射思想将高维空间的数据映射到低维空间中,用样本构造近邻图,通过图的嵌入找到低维空间,降维后的空间能保持原始数据集的流形结构.其次,得到的样本嵌入矩阵表示特征的重要性,是区分特征对每一个聚类簇的贡献大小的指标,利用低维空间对高维空间的拟合,构造一个目标函数.最后,目标函数本质是回归问题,求解回归优化问题常用最小角回归算法,使用L 1范数进行稀疏回归计算每个特征的得分,选出得分靠前的特征.在六个现实数据集上的实验结果表明:该算法在聚类精度和互信息上取得了较好的实验结果,能有效地选出重要特征,在降维方面具有良好性能,优于其他对比算法.
推荐文章
无监督环境下基于聚类集成的特征选择
特征聚类
无监督学习
集成聚类
基于K-均值聚类的无监督的特征选择方法
特征选择
相关性分析
无监督学习
聚类
局部和稀疏保持无监督特征选择法
局部保持投影
稀疏保持投影
高维小样本
无监督
特征选择
聚类
稀疏回归和流形学习的无监督特征选择算法
无监督学习
特征选择
稀疏回归
特征流形学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于稀疏聚类的无监督特征选择
来源期刊 南京大学学报(自然科学版) 学科 工学
关键词 无监督特征选择 流形学习 特征映射 稀疏回归
年,卷(期) 2018,(1) 所属期刊栏目
研究方向 页码范围 107-115
页数 9页 分类号 TP311
字数 6009字 语种 中文
DOI 10.13232/j.cnki.jnju.2018.01.012
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵红 闽南师范大学粒计算及其应用重点实验室 12 34 3.0 5.0
2 杨文元 闽南师范大学粒计算及其应用重点实验室 14 33 3.0 5.0
3 董利梅 闽南师范大学粒计算及其应用重点实验室 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (9)
节点文献
引证文献  (2)
同被引文献  (4)
二级引证文献  (0)
1985(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(2)
  • 参考文献(2)
  • 二级参考文献(0)
2003(3)
  • 参考文献(3)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
无监督特征选择
流形学习
特征映射
稀疏回归
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京大学学报(自然科学版)
双月刊
0469-5097
32-1169/N
江苏省南京市南京大学
chi
出版文献量(篇)
2526
总下载数(次)
6
总被引数(次)
23071
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导