基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的基于支持向量机的单类分类器因计算复杂度高而无法满足大规模数据实时处理的需求,在线学习方法为解决该问题提供了一种有效途径.本文在挖掘样本数据在特征空间分布性状的基础上,提出了一种基于凸壳的在线单类学习机(One-class Online Classifier based on Convex Hull,OOCCH).该方法首先使用凸壳的定义选择能代表特征空间中数据分布的凸壳向量对应的原始样本作为训练样本来缩减训练集的规模;其次在分类器在线更新阶段利用凸壳向量动态地调整分类器的训练样本.理论分析证明了OOCCH的有效性,与现有的在线单类分类器的实验比较,OOCCH在训练时间和分类性能方面有显著优势.
推荐文章
基于在线序列-极限学习机的干旱预测
极限学习机
在线序列
干旱
预测因子
在线增量极限学习机及其性能研究
极限学习机
增量学习
在线学习
广义逆
在线增量极限学习机
基于并行学习的多层极限学习机
神经网络
稀疏编码
极限学习机
并行学习
局部感知的类限制极限学习机
局部感知
极限学习机
自动编码器
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于凸壳的在线单类学习机
来源期刊 西南大学学报(自然科学版) 学科 工学
关键词 在线学习 单类 分类 凸壳
年,卷(期) 2018,(12) 所属期刊栏目 工程与信息技术
研究方向 页码范围 163-172
页数 10页 分类号 TP391.4
字数 语种 中文
DOI 10.13718/j.cnki.xdzk.2018.12.025
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 殷新春 扬州大学信息工程学院 121 716 12.0 20.0
2 周国华 常州轻工职业技术学院信息工程系 16 9 2.0 2.0
4 申燕萍 常州轻工职业技术学院信息工程系 9 15 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (35)
共引文献  (29)
参考文献  (20)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(4)
  • 参考文献(2)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(4)
  • 参考文献(2)
  • 二级参考文献(2)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(6)
  • 参考文献(4)
  • 二级参考文献(2)
2014(8)
  • 参考文献(2)
  • 二级参考文献(6)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(3)
  • 参考文献(2)
  • 二级参考文献(1)
2017(4)
  • 参考文献(3)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
在线学习
单类
分类
凸壳
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西南大学学报(自然科学版)
月刊
1673-9868
50-1189/N
大16开
重庆市北碚区天生路2号
1957
chi
出版文献量(篇)
6419
总下载数(次)
17
总被引数(次)
50161
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导