基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目前,基于目标分解特征的传统极化SAR图像分类方法,通常不能满足使用者对精度的需求,因此有必要进一步提高其分类精度.纹理特征是提高地物辨识度的重要特征,将目标分解与其结合可以有效增加特征向量在分类中的作用,改善极化SAR分类过程中精度低的问题,因此,本文提出一种结合纹理特征的极化SAR图像分类方法.实验结果表明,在不同的特征向量中,结合纹理特征后,各类地物的分类精度以及总体分类精度均有不同程度提高.
推荐文章
基于目标分解的极化SAR图像SVM监督分类
极化合成孔径雷达
图像分类
目标分解
支持向量机
Wishart迭代
模糊C-均值
基于纹理和边缘的SAR图像SVM分类
合成孔径雷达图像分类
纹理特征提取
边缘特征提取
灰度共生矩阵
支持向量机
主成分分析
一种基于纹理特征融合的SAR图像分割方法
灰度共生矩阵
特征融合
双Markov模型
多分辨MPM
纹理分割
引入极化方位角特征的极化 SAR 图像分类
极化合成孔径雷达
图像分类
四分量分解
极化方位角
Wishart 迭代
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种结合纹理特征的极化SAR图像SVM分类方法
来源期刊 北京测绘 学科 地球科学
关键词 极化合成孔径雷达(SAR)图像分类 目标分解 纹理特征 支持向量机(SVM)
年,卷(期) 2018,(10) 所属期刊栏目 经验交流
研究方向 页码范围 1235-1239
页数 5页 分类号 P237
字数 2516字 语种 中文
DOI 10.19580/j.cnki.1007-3000.2018.10.027
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 权亚楠 2 4 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (2)
共引文献  (2)
参考文献  (13)
节点文献
引证文献  (4)
同被引文献  (10)
二级引证文献  (1)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(3)
  • 参考文献(2)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(3)
  • 参考文献(3)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(4)
  • 引证文献(4)
  • 二级引证文献(0)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
极化合成孔径雷达(SAR)图像分类
目标分解
纹理特征
支持向量机(SVM)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
北京测绘
月刊
1007-3000
11-3537/P
大16开
北京市海淀区羊坊店路15号
1987
chi
出版文献量(篇)
3644
总下载数(次)
21
论文1v1指导