基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为充分提取极化合成孔径雷达(synthetic aperture Radar,SAR)图像中的信息,提高图像分类精度,提出结合视觉特征的极化SAR图像分类方法.首先,通过极化目标分解方法提取极化参数组成极化特征向量;然后,通过灰度共生矩阵和假彩色合成图像提取极化SAR图像中的纹理和颜色特征参数构成视觉特征向量;最后,将视觉特征向量与极化特征向量组合成新的特征向量,并利用支持向量机(support vector machine,SVM)方法进行分类.对RADARSAT-2的全极化SLC数据进行分类实验,结果表明,与仅使用极化特征向量相比,视觉特征的加入能有效提高极化SAR图像的分类精度.
推荐文章
引入极化方位角特征的极化 SAR 图像分类
极化合成孔径雷达
图像分类
四分量分解
极化方位角
Wishart 迭代
基于目标分解的极化SAR图像SVM监督分类
极化合成孔径雷达
图像分类
目标分解
支持向量机
Wishart迭代
模糊C-均值
基于H/A/α-Wishart分类的极化SAR图像船只检测
极化合成孔径雷达
船只检测
目标分解
非监督分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 结合视觉特征的极化SAR图像分类
来源期刊 国土资源遥感 学科 工学
关键词 目标分解 视觉特征 极化SAR分类 特征向量
年,卷(期) 2020,(2) 所属期刊栏目 技术方法
研究方向 页码范围 88-93
页数 6页 分类号 TP79
字数 4251字 语种 中文
DOI 10.6046/gtzyyg.2020.02.12
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 卜丽静 辽宁工程技术大学测绘与地理科学学院 35 70 4.0 6.0
2 黄鹏艳 洛阳理工学院土木工程学院 6 5 1.0 2.0
3 范永良 兰州大学土木工程与力学学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (84)
共引文献  (106)
参考文献  (17)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(6)
  • 参考文献(1)
  • 二级参考文献(5)
1999(6)
  • 参考文献(0)
  • 二级参考文献(6)
2000(5)
  • 参考文献(0)
  • 二级参考文献(5)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(6)
  • 参考文献(1)
  • 二级参考文献(5)
2004(6)
  • 参考文献(2)
  • 二级参考文献(4)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(3)
  • 参考文献(2)
  • 二级参考文献(1)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(8)
  • 参考文献(1)
  • 二级参考文献(7)
2018(4)
  • 参考文献(2)
  • 二级参考文献(2)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
目标分解
视觉特征
极化SAR分类
特征向量
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国土资源遥感
季刊
1001-070X
11-2514/P
大16开
北京学院路31号航空物探遥感中心
1988
chi
出版文献量(篇)
2374
总下载数(次)
2
论文1v1指导