基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了在保持对目标检测和分类分析所需信息的同时,降低高光谱影像的维度,提出了一种混合优化策略的特征选择方法.该方法将遗传算法和二进制粒子群优化算法融合成一种新的混合优化策略(GANBPSO),自动选择最优波段组合,同时优化分类器支持向量机(RBF-SVM)的参数,以提高分类器的分类性能.为了说明所提出方法的有效性,采用了在高光谱分类中广泛使用的Indian Pines(AVIRIS 92AV3C)数据集进行测试.结果表明所提出方法(GANBPSO-SVM)能够自动选择包含最多信息的特征子集以保证分类精度,而不需要预先设置所需要的特征子集数量,本方法与传统方法相比具有更好的分类效果.
推荐文章
高光谱影像波段选择算法研究
高光谱影像
波段选择
特征提取与选择
基于混沌杜鹃搜索算法的高光谱影像波段选择
高光谱影像
波段选择
杜鹃搜索算法
混沌映射
一种基于SVM特征选择的油气预测方法
向量计算机
地震数据处理
油气藏
预测
观音场气田
高光谱图像的特征提取与特征选择研究
高光谱图像
特征提取
特征选择
主成分分析
最小噪声分离
独立成分分析
核主成分分析
投影寻踪
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于GANBPSO-SVM的高光谱影像特征选择方法
来源期刊 地理科学 学科 地球科学
关键词 高光谱影像 特征选择 粒子群优化 支持向量机
年,卷(期) 2018,(6) 所属期刊栏目
研究方向 页码范围 972-978
页数 7页 分类号 P237
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 谢福鼎 54 419 12.0 17.0
2 姚娆 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (8)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1977(1)
  • 参考文献(1)
  • 二级参考文献(0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(7)
  • 参考文献(0)
  • 二级参考文献(7)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(5)
  • 参考文献(5)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
高光谱影像
特征选择
粒子群优化
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
地理科学
月刊
1000-0690
22-1124/P
16开
长春市高新北区盛北大街4888号
8-31
1981
chi
出版文献量(篇)
3543
总下载数(次)
10
论文1v1指导