基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于图松弛优化为非近似迭代方法提供了有效的分析解决方案,且实现简单。然而,由于矩阵的逆在计算时需要多项式时间,则在运行速度方面不是很理想,当面对较大规模数据时此方法将变得不可行。提出了对基于图松弛优化聚类进行快速近似提升的两种方法:一个是基于k 均值聚类,另一个是基于随机投影树。广泛实验表明,这些算法在运算速度方面表现较优,聚类精度变化非常小。具体来讲,该算法在运算大规模数据时精度优于k 均值算法,并且在保证精度的情况下运行速度远快于基于图松弛优化聚类算法。值得注意的是,该算法可以使得单个机器在数分钟内对具有数百万样本的数据集进行聚类.
推荐文章
基于相异度度量的图聚类方法
图聚类
无向非加权图
邻接矩阵
相异度
基于近似网页聚类的智能搜索系统
信息搜索
搜索引擎
近似网页聚类
基于能量函数和模块最优化的不确定图聚类
不确定图
图挖掘
能量模型
模块化聚类
图聚类
基于聚类中心优化的k-means最佳聚类数确定方法
k-means聚类
初始聚类中心
样本密度
聚类数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 图松弛优化聚类的快速近似提升方法
来源期刊 计算机科学与探索 学科 工学
关键词 无监督学习 基于图松弛优化聚类 数据量化 高维数据 快速近似
年,卷(期) 2018,(4) 所属期刊栏目 人工智能与模式识别
研究方向 页码范围 642-652
页数 11页 分类号 TP181
字数 7016字 语种 中文
DOI 10.3778/j.issn.1673-9418.1706059
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王士同 江南大学数字媒体学院 528 3424 23.0 37.0
2 谢磊 江南大学数字媒体学院 2 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (27)
共引文献  (14)
参考文献  (18)
节点文献
引证文献  (1)
同被引文献  (8)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1971(2)
  • 参考文献(0)
  • 二级参考文献(2)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(2)
  • 参考文献(2)
  • 二级参考文献(0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(5)
  • 参考文献(3)
  • 二级参考文献(2)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
无监督学习
基于图松弛优化聚类
数据量化
高维数据
快速近似
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学与探索
月刊
1673-9418
11-5602/TP
大16开
北京市海淀区北四环中路211号北京619信箱26分箱
82-560
2007
chi
出版文献量(篇)
2215
总下载数(次)
4
总被引数(次)
10748
论文1v1指导