原文服务方: 石油地球物理勘探       
摘要:
AVO技术是储层含油气性分析的重要工具,可以定性地描述油气藏.常规储层的AVO分类主要依靠人为判别,致使判别结果不准且工作量大.本文从四类AVO曲线中提取特征参数作为训练集,把近似支持向量机方法引入AVO类型判别;再以四类含气砂岩AVO曲线形态为依据,把叠前地震资料的曲线形态特征作为输入参数,获得工区内储层的AVO类型.将该方法应用于南海碎屑岩气田的AVO类型自动识别,取得了较准确的结果,为储层的AVO类型判别提供了可靠、高效、便捷的工具.
推荐文章
基于逐步判别与支持向量机方法的沉积微相定量识别
测井解释
沉积微相
支持向量机
特征提取
逐步判别
贝叶斯判别法
基于V-支持向量机与ε-支持向量机的非线性系统辨识
支持向量机
非线性系统
辨识
回归问题
用于分类的支持向量机
支持向量机
机器学习
分类
支持向量机算法及应用
统计学习理论
支持向量机
模式识别
时间序列预测
电力系统
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 近似支持向量机的AVO类型判别
来源期刊 石油地球物理勘探 学科
关键词 近似支持向量机 AVO类型 分类 储层分析
年,卷(期) 2018,(5) 所属期刊栏目 综合研究
研究方向 页码范围 969-974
页数 6页 分类号 P631
字数 语种 中文
DOI 10.13810/j.cnki.issn.1000-7210.2018.05.010
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (94)
共引文献  (50)
参考文献  (16)
节点文献
引证文献  (3)
同被引文献  (19)
二级引证文献  (2)
1956(2)
  • 参考文献(0)
  • 二级参考文献(2)
1962(2)
  • 参考文献(0)
  • 二级参考文献(2)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(2)
  • 二级参考文献(0)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(2)
  • 参考文献(2)
  • 二级参考文献(0)
2003(8)
  • 参考文献(0)
  • 二级参考文献(8)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(9)
  • 参考文献(1)
  • 二级参考文献(8)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(8)
  • 参考文献(1)
  • 二级参考文献(7)
2010(8)
  • 参考文献(0)
  • 二级参考文献(8)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(8)
  • 参考文献(2)
  • 二级参考文献(6)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(7)
  • 参考文献(1)
  • 二级参考文献(6)
2015(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(5)
  • 引证文献(3)
  • 二级引证文献(2)
研究主题发展历程
节点文献
近似支持向量机
AVO类型
分类
储层分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
石油地球物理勘探
双月刊
1000-7210
13-1095/TE
大16开
河北省涿州市11号信箱石油学会
1966-01-01
chi
出版文献量(篇)
3843
总下载数(次)
0
论文1v1指导