基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
数据稀疏性问题是传统协同过滤算法的主要瓶颈之一.迁移学习通常是利用目标领域与辅助领域的潜在关系,对辅助领域进行知识迁移,以此来提高目标领域的推荐质量.现有的基于相似度迁移模型,普遍只利用了用户评分信息,并且在评分相似度计算上忽略了用户评分标准个性差异.针对这些问题,提出了一种综合相似度迁移模型,在相似度计算上,即利用了用户评分信息同时也利用了用户属性信息,并且考虑了用户间对满意度的打分标准的差异性,采用了用户评分分布一致性来衡量用户评分相似度的方法,提高了相似度计算的准确性,从而提高了数据迁移的质量.实验结果表明,该模型较其他算法能比较有效地缓解数据稀疏性问题.
推荐文章
基于项目综合相似度的协同过滤算法
协同过滤
项目相似度
类别相似度
综合相似度
发射率
社会化标签语义相似度的协同过滤算法
协同过滤
推荐系统
社会化标签
语义相似度
预测性能
融合正态分布函数相似度的协同过滤算法
相似度量
正态分布函数
协同过滤
邻近用户集合
基于二阶段相似度学习的协同过滤推荐算法
二阶段
相似度学习
协同过滤
既约梯度法
K-最近邻算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于综合相似度迁移的协同过滤算法
来源期刊 四川大学学报(自然科学版) 学科 工学
关键词 数据稀疏 协同过滤 迁移学习 相似度迁移
年,卷(期) 2018,(3) 所属期刊栏目 计算机科学
研究方向 页码范围 477-482
页数 6页 分类号 TP391
字数 3415字 语种 中文
DOI 10.3969/j.issn.0490-6756.2018.03.010
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王霞 四川大学计算机学院 107 441 11.0 15.0
2 孙界平 四川大学计算机学院 15 91 6.0 9.0
3 琚生根 四川大学计算机学院 72 460 11.0 16.0
4 金玉 四川大学计算机学院 1 6 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (65)
共引文献  (14)
参考文献  (8)
节点文献
引证文献  (6)
同被引文献  (23)
二级引证文献  (9)
1951(1)
  • 参考文献(0)
  • 二级参考文献(1)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(7)
  • 参考文献(0)
  • 二级参考文献(7)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(9)
  • 参考文献(0)
  • 二级参考文献(9)
2015(6)
  • 参考文献(1)
  • 二级参考文献(5)
2016(6)
  • 参考文献(5)
  • 二级参考文献(1)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(9)
  • 引证文献(4)
  • 二级引证文献(5)
2020(6)
  • 引证文献(2)
  • 二级引证文献(4)
研究主题发展历程
节点文献
数据稀疏
协同过滤
迁移学习
相似度迁移
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
四川大学学报(自然科学版)
双月刊
0490-6756
51-1595/N
大16开
成都市九眼桥望江路29号
62-127
1955
chi
出版文献量(篇)
5772
总下载数(次)
10
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导