钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
文献导航
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
数据库索引
>
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
默认
篇关摘
篇名
关键词
摘要
全文
作者
作者单位
基金
分类号
搜索文章
搜索思路
钛学术文献服务平台
\
学术期刊
\
工业技术期刊
\
自动化技术与计算机技术期刊
\
计算机技术与发展期刊
\
基于长短时记忆和动态贝叶斯网络的序列预测
基于长短时记忆和动态贝叶斯网络的序列预测
作者:
司阳
肖秦琨
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
时间序列预测
长短时记忆
贝叶斯网络
图模型
摘要:
伴随着计算机视觉技术的迅猛发展,时间序列预测问题在算法优化中扮演着越来越重要的作用.由于数据不确定性的增加,多步预测遇到了巨大的挑战.针对传统预测模型中累积误差造成的预测精度低和算法复杂度等问题,提出了一种基于长短时记忆神经网络(LSTM)和动态贝叶斯网络(DBN)的时间序列预测模型,研究并证明了一种最优估计理论,并在此基础上得到了最优的预测估计.利用递归图模型,通过概率推理提高了预测性能,建立了一种由长短时记忆预测模型和动态贝叶斯网络组合成的新的图模型,称其为基于长短时记忆神经网络和动态贝叶斯网络的时间序列预测模型(LSTM-DBN),用于预测序列数据.仿真结果表明,该模型能够在提高序列预测精度和速度的同时,降低算法的复杂度.
暂无资源
收藏
引用
分享
推荐文章
融合宽残差和长短时记忆网络的动态手势识别研究
手势识别
3D卷积神经网络
长短时记忆网络
宽残差网络
基于长短时记忆神经网络的带钢酸洗浓度预测
浓度预测
带钢酸洗
深度学习
长短期记忆
神经网络
基于长短时记忆神经网络的水库洪水预报
洪水预报
长短时记忆神经网络
预见期
训练速度
白盆珠水库
基于卷积神经网络与双向长短时记忆网络组合模型的短时交通流预测
智能交通
短时交通流预测
深度学习
CNN
BiLSTM
内容分析
文献信息
引文网络
相关学者/机构
相关基金
期刊文献
内容分析
关键词云
关键词热度
相关文献总数
(/次)
(/年)
文献信息
篇名
基于长短时记忆和动态贝叶斯网络的序列预测
来源期刊
计算机技术与发展
学科
工学
关键词
时间序列预测
长短时记忆
贝叶斯网络
图模型
年,卷(期)
2018,(9)
所属期刊栏目
智能、算法、系统工程
研究方向
页码范围
59-63
页数
5页
分类号
TP39
字数
3291字
语种
中文
DOI
10.3969/j.issn.1673-629X.2018.09.013
五维指标
作者信息
序号
姓名
单位
发文数
被引次数
H指数
G指数
1
肖秦琨
西安工业大学电子信息工程学院
36
224
9.0
12.0
2
司阳
西安工业大学电子信息工程学院
3
4
1.0
2.0
传播情况
被引次数趋势
(/次)
(/年)
引文网络
引文网络
二级参考文献
(90)
共引文献
(134)
参考文献
(17)
节点文献
引证文献
(4)
同被引文献
(4)
二级引证文献
(0)
1973(1)
参考文献(0)
二级参考文献(1)
1987(1)
参考文献(0)
二级参考文献(1)
1992(3)
参考文献(1)
二级参考文献(2)
1995(3)
参考文献(0)
二级参考文献(3)
1997(4)
参考文献(0)
二级参考文献(4)
1998(7)
参考文献(0)
二级参考文献(7)
1999(7)
参考文献(1)
二级参考文献(6)
2000(4)
参考文献(0)
二级参考文献(4)
2001(5)
参考文献(0)
二级参考文献(5)
2002(2)
参考文献(0)
二级参考文献(2)
2003(4)
参考文献(0)
二级参考文献(4)
2004(7)
参考文献(0)
二级参考文献(7)
2005(3)
参考文献(0)
二级参考文献(3)
2006(5)
参考文献(0)
二级参考文献(5)
2007(7)
参考文献(2)
二级参考文献(5)
2008(7)
参考文献(1)
二级参考文献(6)
2009(4)
参考文献(1)
二级参考文献(3)
2010(8)
参考文献(0)
二级参考文献(8)
2011(8)
参考文献(1)
二级参考文献(7)
2012(6)
参考文献(2)
二级参考文献(4)
2013(1)
参考文献(0)
二级参考文献(1)
2014(6)
参考文献(4)
二级参考文献(2)
2015(2)
参考文献(2)
二级参考文献(0)
2016(1)
参考文献(1)
二级参考文献(0)
2017(1)
参考文献(1)
二级参考文献(0)
2018(0)
参考文献(0)
二级参考文献(0)
引证文献(0)
二级引证文献(0)
2019(2)
引证文献(2)
二级引证文献(0)
2020(2)
引证文献(2)
二级引证文献(0)
研究主题发展历程
节点文献
时间序列预测
长短时记忆
贝叶斯网络
图模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
主办单位:
陕西省计算机学会
出版周期:
月刊
ISSN:
1673-629X
CN:
61-1450/TP
开本:
大16开
出版地:
西安市雁塔路南段99号
邮发代号:
52-127
创刊时间:
1991
语种:
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
相关基金
国家自然科学基金
英文译名:
the National Natural Science Foundation of China
官方网址:
http://www.nsfc.gov.cn/
项目类型:
青年科学基金项目(面上项目)
学科类型:
数理科学
陕西省自然科学基金
英文译名:
Natural Science Basic Research Plan in Shaanxi Province of China
官方网址:
项目类型:
学科类型:
期刊文献
相关文献
1.
融合宽残差和长短时记忆网络的动态手势识别研究
2.
基于长短时记忆神经网络的带钢酸洗浓度预测
3.
基于长短时记忆神经网络的水库洪水预报
4.
基于卷积神经网络与双向长短时记忆网络组合模型的短时交通流预测
5.
长短时记忆网络的自由体操视频自动描述方法
6.
采用长短时记忆网络的低资源语音识别方法
7.
基于长短时记忆网络的仿真系统数据故障诊断方法
8.
基于贝叶斯网络的跳频序列多步预测
9.
对抗长短时记忆网络的跨语言 文本情感分类方法
10.
基于双向长短时记忆单元和卷积神经网络的多语种文本分类方法
11.
电力物联网下双向长短时记忆的线损预测计算策略研究
12.
基于长短时记忆神经网络的风电机组滚动轴承故障诊断方法
13.
基于长短时记忆网络的旋转机械状态预测研究
14.
基于贝叶斯网络的内部威胁预测研究
15.
基于自适应深度长短时记忆网络的电力负荷预测
推荐文献
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
根据相关规定,获取原文需跳转至原文服务方进行注册认证身份信息
完成下面三个步骤操作后即可获取文献,阅读后请
点击下方页面【继续获取】按钮
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
原文合作方
继续获取
获取文献流程
1.访问原文合作方请等待几秒系统会自动跳转至登录页,首次访问请先注册账号,填写基本信息后,点击【注册】
2.注册后进行实名认证,实名认证成功后点击【返回】
3.检查邮箱地址是否正确,若错误或未填写请填写正确邮箱地址,点击【确认支付】完成获取,文献将在1小时内发送至您的邮箱
*若已注册过原文合作方账号的用户,可跳过上述操作,直接登录后获取原文即可
点击
【获取原文】
按钮,跳转至合作网站。
首次获取需要在合作网站
进行注册。
注册并实名认证,认证后点击
【返回】按钮。
确认邮箱信息,点击
【确认支付】
, 订单将在一小时内发送至您的邮箱。
*
若已经注册过合作网站账号,请忽略第二、三步,直接登录即可。
期刊分类
期刊(年)
期刊(期)
期刊推荐
一般工业技术
交通运输
军事科技
冶金工业
动力工程
化学工业
原子能技术
大学学报
建筑科学
无线电电子学与电信技术
机械与仪表工业
水利工程
环境科学与安全科学
电工技术
石油与天然气工业
矿业工程
自动化技术与计算机技术
航空航天
轻工业与手工业
金属学与金属工艺
计算机技术与发展2022
计算机技术与发展2021
计算机技术与发展2020
计算机技术与发展2019
计算机技术与发展2018
计算机技术与发展2017
计算机技术与发展2016
计算机技术与发展2015
计算机技术与发展2014
计算机技术与发展2013
计算机技术与发展2012
计算机技术与发展2011
计算机技术与发展2010
计算机技术与发展2009
计算机技术与发展2008
计算机技术与发展2007
计算机技术与发展2006
计算机技术与发展2005
计算机技术与发展2004
计算机技术与发展2003
计算机技术与发展2002
计算机技术与发展2001
计算机技术与发展2018年第9期
计算机技术与发展2018年第8期
计算机技术与发展2018年第7期
计算机技术与发展2018年第6期
计算机技术与发展2018年第5期
计算机技术与发展2018年第4期
计算机技术与发展2018年第3期
计算机技术与发展2018年第2期
计算机技术与发展2018年第12期
计算机技术与发展2018年第11期
计算机技术与发展2018年第10期
计算机技术与发展2018年第1期
关于我们
用户协议
隐私政策
知识产权保护
期刊导航
免费查重
论文知识
钛学术官网
按字母查找期刊:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他
联系合作 广告推广: shenyukuan@paperpass.com
京ICP备2021016839号
营业执照
版物经营许可证:新出发 京零 字第 朝220126号