基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
通过分析现有短文本聚类算法的缺陷,提出了一种基于改进相似度与类中心向量的半监督短文本聚类算法.首先,定义强类别区分度词,利用已加标数据的类别信息提取并构造强类别区分度词集合,并对基于初始特征的余弦相似度和基于强类别区分度词项的相似度进行有效融合,得到更加合理的改进的短文本相似度计算公式.然后,通过计算样本与类中心向量的相似度实现对未分类样本的正确划分,与此同时,更新加标数据集合、类中心向量,重新抽取强类别区分度词.重复这个过程,直到实现所有数据的类别划分.实验表明:与其他同类算法相比,本文算法在聚类准确性和时间效率上有了较大的改进.
推荐文章
基于本体及相似度的文本聚类研究
本体
相似度
文本聚类
语义
基于LSTM自动编码机的短文本聚类方法
自然语言处理
短文本
聚类
长短期记忆网络
自动编码机
基于密度自适应邻域相似图的半监督谱聚类
谱聚类
密度自适应邻域
相似图
半监督学习
基于聚类改进的 KN N文本分类算法
文本分类
KNN
聚类化
训练集
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进相似度与类中心向量的半监督短文本聚类算法
来源期刊 计算机工程与科学 学科 工学
关键词 强类别区分度 相似度 类中心向量 半监督聚类 短文本
年,卷(期) 2018,(9) 所属期刊栏目 人工智能与数据挖掘
研究方向 页码范围 1710-1716
页数 7页 分类号 TP391.3
字数 5760字 语种 中文
DOI 10.3969/j.issn.1007-130X.2018.09.025
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 马慧芳 西北师范大学计算机科学与工程学院 59 520 12.0 21.0
2 李晓红 西北师范大学计算机科学与工程学院 22 136 6.0 11.0
3 冉宏艳 西北师范大学计算机科学与工程学院 1 1 1.0 1.0
4 龚继恒 西北师范大学计算机科学与工程学院 1 1 1.0 1.0
5 颜丽 西北师范大学计算机科学与工程学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (93)
共引文献  (239)
参考文献  (9)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1936(1)
  • 参考文献(0)
  • 二级参考文献(1)
1965(1)
  • 参考文献(0)
  • 二级参考文献(1)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(1)
  • 二级参考文献(0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(7)
  • 参考文献(0)
  • 二级参考文献(7)
2007(10)
  • 参考文献(0)
  • 二级参考文献(10)
2008(14)
  • 参考文献(1)
  • 二级参考文献(13)
2009(13)
  • 参考文献(0)
  • 二级参考文献(13)
2010(8)
  • 参考文献(0)
  • 二级参考文献(8)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(6)
  • 参考文献(1)
  • 二级参考文献(5)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
强类别区分度
相似度
类中心向量
半监督聚类
短文本
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与科学
月刊
1007-130X
43-1258/TP
大16开
湖南省长沙市开福区德雅路109号国防科技大学计算机学院
42-153
1973
chi
出版文献量(篇)
8622
总下载数(次)
11
总被引数(次)
59030
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导