基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在大数据时代下,传统暗链检测技术无法在海量网页中快速准确地识别出遭遇“暗链攻击”的网站.为此,提出一种引入机器学习的方法研究网页的暗链检测.该方法结合暗链的域名、相关文本及隐藏结构3种特征,分别采用分类与回归树、梯度提升决策树及随机森林3种算法来构建检测模型并对比其的性能.实验结果表明,该方法具有较高的准确性和可靠性,其中随机森林构建的检测模型分类准确率可以达到0.984.
推荐文章
基于统计机器学习的互联网暗链检测方法
暗链
链接隐藏方式
锚文本
机器学习
文本分类
基于统计机器学习的互联网暗链检测方法
暗链
链接隐藏方式
锚文本
机器学习
文本分类
基于机器学习的批量网页篡改检测方法
机器学习
网页防篡改
篡改检测
网络安全
系统设计
基于机器学习的网络异常流量检测方法
机器学习
ANFIS
BP神经网络
网络异常流量检测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于机器学习的网页暗链检测方法
来源期刊 计算机工程 学科 工学
关键词 暗链 特征提取 交叉验证 分类与回归树 随机森林 梯度提升决策树
年,卷(期) 2018,(10) 所属期刊栏目 网络空间安全专题
研究方向 页码范围 22-27
页数 6页 分类号 TP309.5
字数 4171字 语种 中文
DOI 10.3969/j.issn.1000-3428.
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 薛质 上海交通大学网络空间安全学院 274 1489 18.0 25.0
2 施勇 上海交通大学网络空间安全学院 57 234 9.0 11.0
3 顾徐波 上海交通大学机械与动力工程学院 2 11 1.0 2.0
4 周文怡 上海交通大学网络空间安全学院 1 10 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (35)
共引文献  (7)
参考文献  (8)
节点文献
引证文献  (10)
同被引文献  (37)
二级引证文献  (3)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(6)
  • 参考文献(1)
  • 二级参考文献(5)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(3)
  • 参考文献(2)
  • 二级参考文献(1)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(7)
  • 引证文献(7)
  • 二级引证文献(0)
2020(6)
  • 引证文献(3)
  • 二级引证文献(3)
研究主题发展历程
节点文献
暗链
特征提取
交叉验证
分类与回归树
随机森林
梯度提升决策树
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
总被引数(次)
317027
论文1v1指导